@@ -100,7 +100,7 @@ def test_single_container_local_mode_local_data(modules_sagemaker_session):
100
100
delete_local_path (path )
101
101
102
102
103
- def test_single_container_local_mode_s3_data_remove_input (modules_sagemaker_session ):
103
+ def test_single_container_local_mode_s3_data (modules_sagemaker_session ):
104
104
with lock .lock (LOCK_PATH ):
105
105
try :
106
106
# upload local data to s3
@@ -163,69 +163,7 @@ def test_single_container_local_mode_s3_data_remove_input(modules_sagemaker_sess
163
163
delete_local_path (path )
164
164
165
165
166
- def test_single_container_local_mode_s3_data_not_remove_input (modules_sagemaker_session ):
167
- with lock .lock (LOCK_PATH ):
168
- try :
169
- # upload local data to s3
170
- session = modules_sagemaker_session
171
- bucket = session .default_bucket ()
172
- session .upload_data (
173
- path = os .path .join (SOURCE_DIR , "data/train/" ),
174
- bucket = bucket ,
175
- key_prefix = "data/train" ,
176
- )
177
- session .upload_data (
178
- path = os .path .join (SOURCE_DIR , "data/test/" ),
179
- bucket = bucket ,
180
- key_prefix = "data/test" ,
181
- )
182
-
183
- source_code = SourceCode (
184
- source_dir = SOURCE_DIR ,
185
- entry_script = "local_training_script.py" ,
186
- )
187
-
188
- compute = Compute (
189
- instance_type = "local_cpu" ,
190
- instance_count = 1 ,
191
- )
192
-
193
- # read input data from s3
194
- train_data = InputData (channel_name = "train" , data_source = f"s3://{ bucket } /data/train/" )
195
-
196
- test_data = InputData (channel_name = "test" , data_source = f"s3://{ bucket } /data/test/" )
197
-
198
- model_trainer = ModelTrainer (
199
- training_image = DEFAULT_CPU_IMAGE ,
200
- sagemaker_session = modules_sagemaker_session ,
201
- source_code = source_code ,
202
- compute = compute ,
203
- input_data_config = [train_data , test_data ],
204
- base_job_name = "local_mode_single_container_s3_data" ,
205
- training_mode = Mode .LOCAL_CONTAINER ,
206
- remove_inputs_and_container_artifacts = False ,
207
- )
208
-
209
- model_trainer .train ()
210
- assert os .path .exists (os .path .join (CWD , "compressed_artifacts/model.tar.gz" ))
211
- finally :
212
- subprocess .run (["docker" , "compose" , "down" , "-v" ])
213
- directories = [
214
- "compressed_artifacts" ,
215
- "artifacts" ,
216
- "model" ,
217
- "shared" ,
218
- "input" ,
219
- "output" ,
220
- "algo-1" ,
221
- ]
222
-
223
- for directory in directories :
224
- path = os .path .join (CWD , directory )
225
- delete_local_path (path )
226
-
227
-
228
- def test_multi_container_local_mode_remove_input (modules_sagemaker_session ):
166
+ def test_multi_container_local_mode (modules_sagemaker_session ):
229
167
with lock .lock (LOCK_PATH ):
230
168
try :
231
169
source_code = SourceCode (
@@ -284,65 +222,3 @@ def test_multi_container_local_mode_remove_input(modules_sagemaker_session):
284
222
for directory in directories :
285
223
path = os .path .join (CWD , directory )
286
224
delete_local_path (path )
287
-
288
-
289
- def test_multi_container_local_mode_not_remove_input (modules_sagemaker_session ):
290
- with lock .lock (LOCK_PATH ):
291
- try :
292
- source_code = SourceCode (
293
- source_dir = SOURCE_DIR ,
294
- entry_script = "local_training_script.py" ,
295
- )
296
-
297
- distributed = Torchrun (
298
- process_count_per_node = 1 ,
299
- )
300
-
301
- compute = Compute (
302
- instance_type = "local_cpu" ,
303
- instance_count = 2 ,
304
- )
305
-
306
- train_data = InputData (
307
- channel_name = "train" ,
308
- data_source = os .path .join (SOURCE_DIR , "data/train/" ),
309
- )
310
-
311
- test_data = InputData (
312
- channel_name = "test" ,
313
- data_source = os .path .join (SOURCE_DIR , "data/test/" ),
314
- )
315
-
316
- model_trainer = ModelTrainer (
317
- training_image = DEFAULT_CPU_IMAGE ,
318
- sagemaker_session = modules_sagemaker_session ,
319
- source_code = source_code ,
320
- distributed = distributed ,
321
- compute = compute ,
322
- input_data_config = [train_data , test_data ],
323
- base_job_name = "local_mode_multi_container" ,
324
- training_mode = Mode .LOCAL_CONTAINER ,
325
- remove_inputs_and_container_artifacts = False ,
326
- )
327
-
328
- model_trainer .train ()
329
- assert os .path .exists (os .path .join (CWD , "compressed_artifacts/model.tar.gz" ))
330
- assert os .path .exists (os .path .join (CWD , "algo-1" ))
331
- assert os .path .exists (os .path .join (CWD , "algo-2" ))
332
-
333
- finally :
334
- subprocess .run (["docker" , "compose" , "down" , "-v" ])
335
- directories = [
336
- "compressed_artifacts" ,
337
- "artifacts" ,
338
- "model" ,
339
- "shared" ,
340
- "input" ,
341
- "output" ,
342
- "algo-1" ,
343
- "algo-2" ,
344
- ]
345
-
346
- for directory in directories :
347
- path = os .path .join (CWD , directory )
348
- delete_local_path (path )
0 commit comments