Releases: aws/sagemaker-python-sdk
Releases · aws/sagemaker-python-sdk
SageMaker Python SDK 1.3.0
- feature: add chainer
SageMaker Python SDK 1.2.5
- bug-fix: Change module names to string type in all
- feature: Save training output files in local mode
- bug-fix: tensorflow-serving-api: SageMaker does not conflict with tensorflow-serving-api module version
- feature: Local Mode: add support for local training data using file://
- feature: Updated TensorFlow Serving api protobuf files
- bug-fix: No longer poll for logs from stopped training jobs
SageMaker Python SDK 1.2.4
- feature: Estimators: add support for Amazon Random Cut Forest algorithm
SageMaker Python SDK 1.2.3
1.2.3
- bug-fix: Fix local mode not using the right s3 bucket
SageMaker Python SDK v1.2.2
1.2.2
- bug-fix: Estimators: fix valid range of hyper-parameter 'loss' in linear learner
SageMaker Python SDK 1.2.1
1.2.1
- bug-fix: Change Local Mode to use a sagemaker-local docker network
v1.2.0: Update default versions to TensorFlow 1.6 and MXNet 1.1 (#118)
1.2.0
- feature: Add Support for Local Mode
- feature: Estimators: add support for TensorFlow 1.6.0
- feature: Estimators: add support for MXNet 1.1.0
- feature: Frameworks: Use more idiomatic ECR repository naming scheme
SageMaker Python SDK 1.1.3
- bug-fix: TensorFlow: Display updated data correctly for TensorBoard launched from
run_tensorboard_locally=True
- feature: Tests: create configurable
sagemaker_session
pytest fixture for all integration tests - bug-fix: AmazonEstimators: fix inaccurate hyper-parameters in kmeans, pca and linear learner
- feature: Add new hyperparameters for linear learner.
SageMaker Python SDK 1.1.2
- bug-fix: AmazonEstimators: do not call create bucket if data location is provided
SageMaker Python SDK 1.1.1
- feature: Estimators: add
requirements.txt
support for TensorFlow