Skip to content
This repository was archived by the owner on Jun 2, 2025. It is now read-only.
This repository was archived by the owner on Jun 2, 2025. It is now read-only.

Cannot use vector as input struct type due to: java.lang.ClassCastException: scala.collection.convert.Wrappers$JListWrapper cannot be cast to ml.combust.mleap.tensor.Tensor #3

@make

Description

@make

I am trying to deploy bundled a Spark ML NaiveBayesModel with sagemaker-sparkml-serving-container.

I am running sagemaker-sparkml-serving-container with following command:

SCHEMA='{"input":[{"name":"features","type":"double","struct":"vector"}],"output":{"name":"prediction","type":"double"}}'
BUNDLE=/tmp/naivebayes_bundle
docker run -p 8080:8080 -e SAGEMAKER_SPARKML_SCHEMA="$SCHEMA" -v $BUNDLE:/opt/ml/model sagemaker-sparkml-serving:2.2 serve

When calling /invocations with:

curl -i -H "content-type:application/json" http://localhost:8080/invocations -d '{"data":[[1.0,2.0,3.0]]}'

Following error is thrown:

java.lang.ClassCastException: scala.collection.convert.Wrappers$JListWrapper cannot be cast to ml.combust.mleap.tensor.Tensor
	at ml.combust.mleap.runtime.transformer.classification.NaiveBayesClassifier$$anonfun$1.apply(NaiveBayesClassifier.scala:19) ~[sparkml-serving-2.2.jar:2.2]
	at ml.combust.mleap.runtime.frame.Row$class.udfValue(Row.scala:241) ~[sparkml-serving-2.2.jar:2.2]
	at ml.combust.mleap.runtime.frame.ArrayRow.udfValue(ArrayRow.scala:17) ~[sparkml-serving-2.2.jar:2.2]
	at ml.combust.mleap.runtime.frame.Row$class.withValues(Row.scala:225) ~[sparkml-serving-2.2.jar:2.2]
	at ml.combust.mleap.runtime.frame.ArrayRow.withValues(ArrayRow.scala:17) ~[sparkml-serving-2.2.jar:2.2]
	at ml.combust.mleap.runtime.frame.DefaultLeapFrame$$anonfun$withColumns$1$$anonfun$apply$3$$anonfun$4.apply(DefaultLeapFrame.scala:79) ~[sparkml-serving-2.2.jar:2.2]
	at ml.combust.mleap.runtime.frame.DefaultLeapFrame$$anonfun$withColumns$1$$anonfun$apply$3$$anonfun$4.apply(DefaultLeapFrame.scala:79) ~[sparkml-serving-2.2.jar:2.2]
	at scala.collection.immutable.Stream.map(Stream.scala:418) ~[sparkml-serving-2.2.jar:2.2]
	at ml.combust.mleap.runtime.frame.DefaultLeapFrame$$anonfun$withColumns$1$$anonfun$apply$3.apply(DefaultLeapFrame.scala:79) ~[sparkml-serving-2.2.jar:2.2]
	at ml.combust.mleap.runtime.frame.DefaultLeapFrame$$anonfun$withColumns$1$$anonfun$apply$3.apply(DefaultLeapFrame.scala:78) ~[sparkml-serving-2.2.jar:2.2]
	at scala.util.Success$$anonfun$map$1.apply(Try.scala:237) ~[sparkml-serving-2.2.jar:2.2]
	at scala.util.Try$.apply(Try.scala:192) ~[sparkml-serving-2.2.jar:2.2]
	at scala.util.Success.map(Try.scala:237) ~[sparkml-serving-2.2.jar:2.2]
	at ml.combust.mleap.runtime.frame.DefaultLeapFrame$$anonfun$withColumns$1.apply(DefaultLeapFrame.scala:77) ~[sparkml-serving-2.2.jar:2.2]
	at ml.combust.mleap.runtime.frame.DefaultLeapFrame$$anonfun$withColumns$1.apply(DefaultLeapFrame.scala:72) ~[sparkml-serving-2.2.jar:2.2]
	at scala.util.Success.flatMap(Try.scala:231) ~[sparkml-serving-2.2.jar:2.2]
	at ml.combust.mleap.runtime.frame.DefaultLeapFrame.withColumns(DefaultLeapFrame.scala:71) ~[sparkml-serving-2.2.jar:2.2]
	at ml.combust.mleap.runtime.frame.MultiTransformer$class.transform(Transformer.scala:121) ~[sparkml-serving-2.2.jar:2.2]
	at ml.combust.mleap.runtime.transformer.classification.NaiveBayesClassifier.transform(NaiveBayesClassifier.scala:13) ~[sparkml-serving-2.2.jar:2.2]
	at com.amazonaws.sagemaker.utils.ScalaUtils.transformLeapFrame(ScalaUtils.java:44) ~[sparkml-serving-2.2.jar:2.2]
	at com.amazonaws.sagemaker.controller.ServingController.processInputData(ServingController.java:176) ~[sparkml-serving-2.2.jar:2.2]
	at com.amazonaws.sagemaker.controller.ServingController.transformRequestJson(ServingController.java:118) ~[sparkml-serving-2.2.jar:2.2]

Created bundle with following dependencies:

org.apache.spark:spark-core_2.11:2.4.0
org.apache.spark:spark-mllib_2.11:2.4.0
ml.combust.mleap:mleap-spark_2.11:0.12.0

Kotlin code that creates the bundle:

val model = NaiveBayes()
        .setModelType("multinomial")
        .fit(data)
SimpleSparkSerializer().serializeToBundle(model, "file:/tmp/naivebayes_bundle", model.transform(data))

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions