-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNumpyAlg_preprocessing.py
172 lines (109 loc) · 4.13 KB
/
NumpyAlg_preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# coding: utf-8
# In[1]:
def l(*t):
print(t)
def ac(model,y_valid,X_valid ):
print(accuracy_score(y_valid.tolist(),model.predict(X_valid)))
def dist(x1,y1,x2,y2):
return np.linalg.norm(x1-x2) + np.linalg.norm(y2-y1)
'17 раз до 9 27сек'
'100 3.3 3мин'
import pandas as pd
import numpy as np
import datetime
import matplotlib.pyplot as plt
# In[2]:
def readCsv(path,nrows=10000):
data=pd.read_csv(path,
#dtype=types,
nrows=nrows,
parse_dates=['pickup_datetime',
#'dropoff_datetime',
],
date_parser=lambda x:datetime.datetime.strptime(x,'%Y-%m-%d %H:%M:%S %Z'),
usecols=
['vendor_id',
'pickup_datetime',
#'dropoff_datetime',
'pickup_longitude',
'pickup_latitude',
'dropoff_longitude',
'dropoff_latitude',
'rate_code',
'passenger_count',
'trip_distance',
'fare_amount',
'tolls_amount',
])
return data
# In[3]:
import glob
def csvs(pathmatch,nrows=10000):
r=pd.DataFrame()
for path in glob.glob(pathmatch):
print(' reading '+path)
ir=readCsv(path,nrows)
#ir=pd.read_csv(path,nrows=nrows,date_parser=lambda x:datetime.datetime.strptime(x,'%Y-%m-%d %H:%M:%S %Z'))
r=r.append(ir ,ignore_index=True)
print(len(r))
if(len(r)>=nrows):
print('csvs return')
break
return r
r=csvs('qwe0*',1000)
r[:1]
# In[ ]:
# In[4]:
r.info()
# In[5]:
get_ipython().run_cell_magic('time', '', "q=r.pickup_datetime.apply(pd.to_datetime)\n#q=r.pickup_datetime.apply(lambda x:datetime.datetime.strptime(x,'%Y-%m-%d %H:%M:%S %Z'))")
# In[6]:
get_ipython().run_cell_magic('time', '', "q=r.pickup_datetime.apply(lambda x:datetime.datetime.strptime(x,'%Y-%m-%d %H:%M:%S %Z'))")
# In[7]:
data=readCsv('qwe000000000000.csv',nrows=100)
data.info()
#datetime.datetime.strptime('2010-03-04 00:35:16','%a %b %d %H:%M:%S %Y')
#datetime.datetime.strptime('2010-03-04 00:35:16 UTC','%Y-%m-%d %H:%M:%S %Z')
# In[8]:
def create_features(sourcedata):
data=sourcedata.copy()
# create fare
data['fare']=data['tolls_amount']+data['fare_amount']
data=data.drop('tolls_amount',axis=1)
data=data.drop('fare_amount',axis=1)
# filter
data=data[data['fare']>0]
len(data[data['fare']>0])
data=data[data.trip_distance>0]
data=data[(data.pickup_longitude>-80)&(data.pickup_longitude<-20)] # -77
data=data[(data.dropoff_longitude>-80)&(data.dropoff_longitude<-20)] # -77
data=data[(data.dropoff_latitude>10)&(data.dropoff_latitude<60)] # 40
data=data[(data.pickup_latitude>10)&(data.pickup_latitude<60)] # 40
data=data[ data.rate_code.isnull()==False]
#data=data[data['rate_code']!=np.nan]
#
data['p_hour']=data.pickup_datetime.map(lambda x: x.hour)
data['p_dayofweek']=data.pickup_datetime.map(lambda x: x.dayofweek)
data.drop('pickup_datetime',axis=1,inplace=True)
# round
data.pickup_latitude=data.pickup_latitude.apply(lambda x: np.round(x,2))#.apply(np.str)
data.pickup_longitude=data.pickup_longitude.apply(lambda x: np.round(x,2))
data.dropoff_latitude=data.dropoff_latitude.apply(lambda x: np.round(x,2))
data.dropoff_longitude=data.dropoff_longitude.apply(lambda x: np.round(x,2))
return data
data2=create_features(data)
data2
# In[9]:
plt.plot(data.pickup_datetime)
#[q for q in data.pickup_datetime if q<pd.datetime(1920,10,10) ]
#data3=data2[(data2.pickup_longitude>-21)]
#dist(x1,y1,x2,y2):
#[dist(x.pickup_longitude,x.dropoff_longitude,1,1) for x in data]
#[x for x in data2.values]
# In[10]:
data2.describe()
# In[11]:
# dists=[dist(x[1],x[2],x[3],x[4]) for x in data2.values]
# plt.plot(dists)
# plt.plot(data2.trip_distance,color='red')
# dd=pd.DataFrame(dists)