-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel__pure_linalg_lstsq__plotBO_RandomTF_MyAccuracy.py
217 lines (140 loc) · 4.61 KB
/
model__pure_linalg_lstsq__plotBO_RandomTF_MyAccuracy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# coding: utf-8
# In[14]:
#10
import numpy as np
import scipy
import pandas as pd
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import random
def RandomTF(countAll=1000,howOfften=100):
''' рандомный лист True/False с вашей длиной '''
return [random.randrange(howOfften)==0 for x in list(range(countAll)) ]
def customWhere(series,WhereTFArr):
'''они должны иметь одинаковые длины'''
return series[WhereTFArr]
def plotBO(x,y,length=1000,size=8,alpha=0.4,xcut=None,ycut=None):#,height=None,width=None):
'''
Юзай для размера plt.rcParams['figure.figsize']=(250,10)
plt.grid(axis='y') для сетки или 'both'
'''
fig, ax = plt.subplots()#figsize=(height, width))
# обезаем график
print('было y',ax.get_ylim())
if(ycut):
ax.set_ylim(min(y),ycut)
print('стало get_ylim',ax.get_ylim())
if(xcut):
ax.set_xlim(min(x),xcut)
l=length
plt.scatter(x[:l],y[:l], s=size,alpha=alpha)#,figsize=(height,width))
plt.show()
def my_accuracyArr(valid,pred):
'''выдаёт средний процент отклонения pred от valid'''
def avgBadArr(my_accRes):
def avgBad(x):
if(x>1):
return (x-1)*100
else:
return (1-x)*100
bads=[avgBad(x) for x in my_accRes]
print('среднее отклонение по массиву= '+ str(np.mean(bads)))
return np.mean(bads), bads
if(len(valid)!=len(pred)):
Exception('разные длины!!!')
valPred= np.array([valid.tolist() ,pred])
valPred=valPred.T
my_accRes=[x[0]/x[1] for x in valPred]
my_accRes=np.round(my_accRes,2)
mean,bads=avgBadArr(my_accRes)
return mean#,bads,my_accRes
# In[2]:
import NumpyAlg_preprocessing as fe
1
# In[3]:
data=fe.create_features(fe.csvs('qqqmyAll',nrows=1000
*1000
*0.85
*50
))
# In[4]:
print(data.columns)
qw=data.groupby(["dropoff_longitude","fare"]).size().unstack()
plt.rcParams['figure.figsize']=(100,50)
qw[:1000].plot(legend=None,xlim=[-74.1,-73.8])
# In[5]:
#%matplotlib inline
# %config InlineBackend.figure_format = 'svg'
#plt.rcParams['figure.figsize']=(250,10)
X=data[['trip_distance','rate_code',]]#'p_hour']] # не разницы что с или без hour !! ну чуть чуть
# X=X.drop('fare',axis=1)
# X=X.drop('vendor_id',axis=1)
# сделаем категориальные из p_hour
g=pd.Categorical(data.iloc[:,9])
d=pd.get_dummies(g)
X=data2 =pd.DataFrame(np.c_[X,d])# ,columns=data.columns+d.columns)
# сделаем категориальные из p_hour
g=pd.Categorical(data.iloc[:,10])
d1=pd.get_dummies(g)
X=data2 =pd.DataFrame(np.c_[X,d1])# ,columns=data.columns+d.columns)
# pickup_longitude
g=pd.Categorical(data.iloc[:,1])
d=pd.get_dummies(g)
# X=data2 =pd.DataFrame(np.c_[X,d])# ,columns=data.columns+d.columns)
# # pickup_Lat
g=pd.Categorical(data.iloc[:,2])
d=pd.get_dummies(g)
# X=data2 =pd.DataFrame(np.c_[X,d])# ,columns=data.columns+d.columns)
a=X
# a['p_hour']=pd.Categorical(data[['p_hour']])
#np.array([X.trip_distance,X.rate_tcode])
#a=a.T
y=data['fare']
X
# In[6]:
X_train, X_validation, y_train, y_validation = train_test_split(a, y, train_size=0.75, random_state=42)
r,q,q1,q2=np.linalg.lstsq(X_train,y_train)
# In[7]:
pred=np.dot(X_validation, r)
from sklearn.metrics import mean_squared_error
from math import sqrt
rms = sqrt(mean_squared_error(y_validation.tolist(), pred))
print('impo')
# print(r.ravel())
rms
# print(preк
# print(y_validation.tolist())
# In[8]:
my_accRes= my_accuracyArr(y_validation,pred)
#my_accRes[0]
#: 2 17.4 3.2
#: 1,2 - 17.5
#без 17.7
# 9 17.38 3.1
# 9,10 17.0 3.15
# In[9]:
#plt.rcParams['figure.figsize']=(250,10)
#графики в svg выглядят более четкими
plt.plot(y_validation.tolist()[:100],linewidth=0.1)
plt.plot(pred[:100],'red',linewidth=0.2)
plt.show()
# In[10]:
o=[[2,2],[4,8]]
p=[1,4]
np.linalg.solve(o,p)
# In[11]:
randTFArr=RandomTF(len(data),1)
xx=data.trip_distance[randTFArr]
xx=data.p_hour[randTFArr]
yy=data.fare[randTFArr]
plt.rcParams['figure.figsize']=(1.5,5)
# plotBO(xx,yy,1000000,1,0.1,None,66)
# plt.plot([1,2],[2,3])
# In[12]:
randTFArr=RandomTF(len(data),20)
xx=data.trip_distance[randTFArr]
xx=data.rate_code[randTFArr]
yy=data.fare[randTFArr]
# plotBO(xx,yy,1000000,1)
# len(xx)