-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy path01_matrix.dart
71 lines (54 loc) · 1.55 KB
/
01_matrix.dart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
/*
-* 542. 01 Matrix *-
Given an m x n binary matrix mat, return the distance of the nearest 0 for each cell.
The distance between two adjacent cells is 1.
Example 1:
Input: mat = [[0,0,0],[0,1,0],[0,0,0]]
Output: [[0,0,0],[0,1,0],[0,0,0]]
Example 2:
Input: mat = [[0,0,0],[0,1,0],[1,1,1]]
Output: [[0,0,0],[0,1,0],[1,2,1]]
Constraints:
m == mat.length
n == mat[i].length
1 <= m, n <= 104
1 <= m * n <= 104
mat[i][j] is either 0 or 1.
There is at least one 0 in mat.
*/
import 'dart:math';
class Solution {
List<List<int>> updateMatrix(List<List<int>> mat) {
final int n = mat.length;
final int m = mat[0].length;
if (mat[0][0] != 0) mat[0][0] = m + n;
//Travel top down
for (int j = 1; j < m; j++) {
if (mat[0][j] != 0) mat[0][j] = mat[0][j - 1] + 1;
}
for (int i = 1; i < n; i++) {
if (mat[i][0] != 0) mat[i][0] = mat[i - 1][0] + 1;
}
for (int i = 1; i < n; i++) {
for (int j = 1; j < m; j++) {
if (mat[i][j] != 0) mat[i][j] = min(mat[i - 1][j], mat[i][j - 1]) + 1;
}
}
//Travel up
for (int j = m - 2; j >= 0; j--) {
if (mat[n - 1][j] != 0)
mat[n - 1][j] = min(mat[n - 1][j], mat[n - 1][j + 1] + 1);
}
for (int i = n - 2; i >= 0; i--) {
if (mat[i][m - 1] != 0)
mat[i][m - 1] = min(mat[i][m - 1], mat[i + 1][m - 1] + 1);
}
for (int i = n - 2; i >= 0; i--) {
for (int j = m - 2; j >= 0; j--) {
if (mat[i][j] != 0)
mat[i][j] = min(mat[i][j], min(mat[i + 1][j], mat[i][j + 1]) + 1);
}
}
return mat;
}
}