-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathbasic_calculator.dart
243 lines (216 loc) · 6.3 KB
/
basic_calculator.dart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
/*
-* 224. Basic Calculator *-
Given a string s representing a valid expression, implement a basic calculator to evaluate it, and return the result of the evaluation.
Note: You are not allowed to use any built-in function which evaluates strings as mathematical expressions, such as eval().
Example 1:
Input: s = "1 + 1"
Output: 2
Example 2:
Input: s = " 2-1 + 2 "
Output: 3
Example 3:
Input: s = "(1+(4+5+2)-3)+(6+8)"
Output: 23
Constraints:
1 <= s.length <= 3 * 105
s consists of digits, '+', '-', '(', ')', and ' '.
s represents a valid expression.
'+' is not used as a unary operation (i.e., "+1" and "+(2 + 3)" is invalid).
'-' could be used as a unary operation (i.e., "-1" and "-(2 + 3)" is valid).
There will be no two consecutive operators in the input.
Every number and running calculation will fit in a signed 32-bit integer.
*/
import 'dart:collection';
class A {
int calculate(String s) {
int sign = 1;
int result = 0;
int number = 0;
int n = s.length;
List<int> st = [];
for (int i = 0; i < n; i++) {
String c = s[i];
if (c.codeUnitAt(0) >= '0'.codeUnitAt(0) &&
c.codeUnitAt(0) <= '9'.codeUnitAt(0)) {
number = number * 10 + (c.codeUnitAt(0) - '0'.codeUnitAt(0));
}
if (c == '-') {
// number completed.
// update result
result += (sign) * (number);
number = 0;
sign = -1;
}
if (c == '+') {
// number completed
// update result
result += (sign) * (number);
number = 0;
sign = 1;
}
if (c == '(') {
// number completed, result updated already before when we encountered +/- before opening bracket
st.add(result);
// so that sign remains at the top (signifies sign before opening bracket was encountered)
st.add(sign);
result = 0; // building result between brackets from scratch
sign = 1;
}
if (c == ')') {
// number is completed
// update result
result += (sign) * (number);
number = 0;
result *= st.first; // multiplying with sign before opening bracket
st.removeLast();
result += st.first; // result constructed before current context.
st.removeLast();
}
}
// last no space character in case is a number itself , we need to use the number also.
result += (sign) * number;
return result;
}
}
class B {
bool isDigit(String? s) {
if (s == null) {
return false;
}
return int.tryParse(s) != null;
}
int calculate(String s) {
List<int> stack = [];
int result = 0;
int number = 0;
int sign = 1;
for (int i = 0; i < s.length; i++) {
String c = s[i];
if (isDigit(c)) {
number = 10 * number + (c.codeUnitAt(0) - '0'.codeUnitAt(0));
} else if (c == '+') {
result += sign * number;
number = 0;
sign = 1;
} else if (c == '-') {
result += sign * number;
number = 0;
sign = -1;
} else if (c == '(') {
//we push the result first, then sign;
stack.add(result);
stack.add(sign);
//reset the sign and result for the value in the parenthesis
sign = 1;
result = 0;
} else if (c == ')') {
result += sign * number;
number = 0;
result *=
stack.removeLast(); //stack.pop() is the sign before the parenthesis
result += stack
.removeLast(); //stack.pop() now is the result calculated before the parenthesis
}
}
if (number != 0) result += sign * number;
return result;
}
}
class C {
bool isDigit(String? s) {
if (s == null) {
return false;
}
return int.tryParse(s) != null;
}
int calculate(String s) {
// all possible case: "+", "-", "(", ")", " ", "1-9"
// +: change sign to positive +1
// -: change sign to negative -1
// (: push current result value and sign onto the stack
// ): pop the previous result value and sign off the stack and do the addition
// " ": skip
// 1-9: read all digits after current digit
Queue<int> stack = Queue();
// initialize result to be 0, sign to be 1
int res = 0, sign = 1;
int n = s.length;
// iterate through all characters of the input
for (int i = 0; i < n; i++) {
String curr = s[i];
switch (curr) {
case '+':
// make sign become positive to indicate we are adding a value
sign = 1;
break;
case '-':
// make sign become negative to indicate we are subtracting a value
sign = -1;
break;
case '(':
// pushing current result as well as the sign onto the stack
stack.addFirst(res);
stack.addFirst(sign);
// reset result and sign
res = 0;
sign = 1;
break;
case ')':
// popping previous result and sign off the stack and do the addition(subtraction)
// with the current calculation result
int prevSign = stack.removeFirst();
int prevRes = stack.removeFirst();
res = prevRes + prevSign * res;
break;
case ' ':
// skip the empty spaces
break;
default:
// in case current char is a digit, read the whole integer
int startIdx = i;
while (i < n && isDigit(s[i])) {
i++;
}
int v = int.parse(s.substring(startIdx, i));
res += sign * v;
i--;
}
}
return res;
}
}
class D {
int pos = 0;
bool isNum(String curr) {
int nums = curr.codeUnitAt(0) - '0'.codeUnitAt(0);
return nums >= 0 && nums <= 9;
}
int solve(String s) {
int sign = 1; // initial take as positive
int nums = 0;
int res = 0;
while (pos < s.length) {
String curr = s[pos++];
if (curr == ' ') {
continue;
} else if (isNum(curr)) {
nums = nums * 10 + curr.codeUnitAt(0) - '0'.codeUnitAt(0);
} else if (curr == '(') {
nums = solve(s);
} else if (curr == ')') {
res += nums * sign;
return res;
} else {
res += sign * nums;
sign = curr == '-' ? -1 : 1;
nums = 0;
}
}
int ret = res + (sign * nums);
return ret;
}
int calculate(String s) {
pos = 0;
return solve(s);
}
}