-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathbinary_tree_maximum_path_sum.dart
123 lines (95 loc) · 2.89 KB
/
binary_tree_maximum_path_sum.dart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
/*
-* 124. Binary Tree Maximum Path Sum *-
A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note that the path does not need to pass through the root.
The path sum of a path is the sum of the node's values in the path.
Given the root of a binary tree, return the maximum path sum of any non-empty path.
Example 1:
Input: root = [1,2,3]
Output: 6
Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.
Example 2:
Input: root = [-10,9,20,null,null,15,7]
Output: 42
Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.
Constraints:
The number of nodes in the tree is in the range [1, 3 * 104].
-1000 <= Node.val <= 1000
*/
// Definition for a binary tree node.
import 'dart:math';
class TreeNode {
int val;
TreeNode? left;
TreeNode? right;
TreeNode([this.val = 0, this.left, this.right]);
}
class A {
int val = -1000;
int maxPathSum(TreeNode? root) {
postOrder(root);
return val;
}
int postOrder(TreeNode? root) {
if (root == null) return 0;
int sumLeft = postOrder(root.left);
int sumRight = postOrder(root.right);
int maxi = max(
root.val,
max(root.val + sumLeft,
max(root.val + sumRight, root.val + sumRight + sumLeft)));
if (maxi > val) val = maxi;
return root.val > root.val + max(sumLeft, sumRight)
? root.val
: root.val + max(sumLeft, sumRight);
}
}
class B {
int maxPathSum(TreeNode? root) {
List<int> maxi = [1];
maxi[0] = -1000;
pathDown(maxi, root);
return maxi[0];
}
int pathDown(List<int> maxi, TreeNode? root) {
if (root == null) return 0;
int leftMax = max(0, pathDown(maxi, root.left));
int rightMax = max(0, pathDown(maxi, root.right));
maxi[0] = max(maxi[0], root.val + leftMax + rightMax);
return root.val + max(leftMax, rightMax);
}
}
class C {
int maxPathSum(TreeNode? root) {
int maxi = -1000;
List<TreeNode> stack = [];
TreeNode? pre = root;
TreeNode? cur = root;
TreeNode? old = null;
while (stack.isNotEmpty || cur != null) {
while (cur != null) {
stack.add(cur);
cur = cur.left;
}
if (stack.isNotEmpty) {
pre = stack.last;
cur = pre.right;
if (cur == null || cur == old) {
stack.removeLast();
int left = pre.left == null ? 0 : pre.left!.val;
int right = cur == null ? 0 : cur.val;
maxi = max(
maxi,
max(
pre.val,
max(pre.val + left,
max(pre.val + right, pre.val + left + right))));
pre.val = max(pre.val, max(pre.val + right, pre.val + left));
old = pre;
cur = null;
} else
old = cur;
}
}
return maxi;
}
}