-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcheapest_flights_within_k_stops.dart
142 lines (108 loc) · 3.95 KB
/
cheapest_flights_within_k_stops.dart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
/*
-* 787. Cheapest Flights Within K Stops *-
There are n cities connected by some number of flights. You are given an array flights where flights[i] = [fromi, toi, pricei] indicates that there is a flight from city fromi to city toi with cost pricei.
You are also given three integers src, dst, and k, return the cheapest price from src to dst with at most k stops. If there is no such route, return -1.
Example 1:
Input: n = 4, flights = [[0,1,100],[1,2,100],[2,0,100],[1,3,600],[2,3,200]], src = 0, dst = 3, k = 1
Output: 700
Explanation:
The graph is shown above.
The optimal path with at most 1 stop from city 0 to 3 is marked in red and has cost 100 + 600 = 700.
Note that the path through cities [0,1,2,3] is cheaper but is invalid because it uses 2 stops.
Example 2:
Input: n = 3, flights = [[0,1,100],[1,2,100],[0,2,500]], src = 0, dst = 2, k = 1
Output: 200
Explanation:
The graph is shown above.
The optimal path with at most 1 stop from city 0 to 2 is marked in red and has cost 100 + 100 = 200.
Example 3:
Input: n = 3, flights = [[0,1,100],[1,2,100],[0,2,500]], src = 0, dst = 2, k = 0
Output: 500
Explanation:
The graph is shown above.
The optimal path with no stops from city 0 to 2 is marked in red and has cost 500.
Constraints:
1 <= n <= 100
0 <= flights.length <= (n * (n - 1) / 2)
flights[i].length == 3
0 <= from-i, toi < n
from-i != toi
1 <= price-i <= 104
There will not be any multiple flights between two cities.
0 <= src, dst, k < n
src != dst
*/
import 'dart:collection';
import 'dart:math';
class A {
int findCheapestPrice(
int n, List<List<int>> flights, int src, int dst, int k) {
// Build graph
// node -> [[neighbor,distance]]
HashMap<int, List<List<int>>> graph = HashMap();
for (int i = 0; i < n; i++) graph[i] = [];
for (List<int> flight in flights) {
int u = flight[0];
int v = flight[1];
int w = flight[0];
graph[u]?.add([v, w]);
}
// int[] -> [node, distance, moves] for every index
// (a, b) -> a[1] - b[1]
Queue<List<int>> pq = Queue()..toList().sort((a, b) => a[1] - b[1]);
List<int> distance = List.filled(n, -1);
List<int> maxMovesUpToNode = List.filled(n, double.maxFinite.toInt());
// Initial mark
distance[src] = 0;
pq.add([src, 0, 0]);
// Run Relaxation Algorithm
while (pq.isNotEmpty) {
// poll remove First
List<int> element = pq.removeFirst();
int node = element[0];
int dis = element[1];
int moves = element[2];
if (maxMovesUpToNode[node] < moves) continue;
maxMovesUpToNode[node] = moves;
for (List<int> edge in graph[node] ?? []) {
int neighbor = edge[0], weight = edge[1];
int neighborNewDistance = weight + dis;
if (distance[neighbor] == -1 ||
neighborNewDistance < distance[neighbor]) {
distance[neighbor] = neighborNewDistance;
}
// If we have moves left.
if (k != moves) {
pq.add([neighbor, neighborNewDistance, moves + 1]);
}
}
}
return distance[dst];
}
}
class B {
int findCheapestPrice(
int n, List<List<int>> flights, int src, int dst, int k) {
// dp[i][j]: min cost to reach city j using at most i edges from src
List<List<int>> dp = List.filled(k + 2, 0)
.map((e) => List.filled(n, double.maxFinite.toInt()))
.toList();
// base case
for (int i = 0; i <= k + 1; i++) dp[i][src] = 0;
// iterate each stop
for (int i = 1; i <= k + 1; i++) {
// iterate each flight
for (List<int> f in flights) {
int from = f[0], to = f[1], cost = f[2];
// ensure city `from` is reachable
if (dp[i - 1][from] != double.maxFinite.toInt()) {
// from + cost -> to
dp[i][to] = min(dp[i][to], dp[i - 1][from] + cost);
}
}
}
// if dp[k + 1][dst] == INT_MAX, it means it is unreachable
// else return the cost
return dp[k + 1][dst] == double.maxFinite.toInt() ? -1 : dp[k + 1][dst];
}
}