At the time of writing this solution You can't submit on leetcode because there is not option for Dart
But i did my best to implement it in DART
because in future if leetcode support dart for this specific solution than things will workout for us HOPE SO
class Solution {
int concatenatedBinary(int n) {
int mod = (1e9 + 7).toInt();
int res = 0;
for (int i = 1; i <= n; i++) {
int bitLen = (log(i) ~/ log(2)) + 1;
res = ((res << bitLen) + i) % mod;
}
return res;
}
}
class Solution {
int concatenatedBinary(int n) {
int res = 0;
int bitLength = 1;
int nextIncrease = 2;
for (int i = 1; i <= n; i++) {
if (i == nextIncrease) {
nextIncrease *= 2;
bitLength++;
}
res = (res << bitLength) | i;
res %= 1000000007;
}
return res;
}
}
class Solution {
int concatenatedBinary(int n) {
int sum = 0;
for (int i = 1; i <= n; i++) {
String binary = i.toRadixString(2);
sum = ((sum << binary.length) + i) % 1000000007;
}
return sum;
}
}
class Solution {
int concatenatedBinary(int n) {
final int modulo = (1e9 + 7).toInt();
int result = 0;
for (int i = 1; i <= n; i++) {
// For each i, we shift left the position of result with * 2,
// while shifting right the position of i with / 2.
int temp = i;
while (temp > 0) {
temp ~/= 2;
result *= 2;
}
// Add the i to the result and get the remainder of modulo.
result = (result + i) % modulo;
}
return result;
}
}
class Solution {
int concatenatedBinary(int n) {
int digits = 0, MOD = 1000000007;
int result = 0;
for (int i = 1; i <= n; i++) {
/* if "i" is a power of 2, then we have one additional digit in
its the binary equivalent compared to that of i-1 */
if ((i & (i - 1)) == 0) digits++;
result = ((result << digits) + i) % MOD;
}
return result;
}
}