-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcount_complete_tree_nodes.dart
121 lines (90 loc) · 2.23 KB
/
count_complete_tree_nodes.dart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
/*
-* 222. Count Complete Tree Nodes *-
Given the root of a complete binary tree, return the number of the nodes in the tree.
According to Wikipedia, every level, except possibly the last, is completely filled in a complete binary tree, and all nodes in the last level are as far left as possible. It can have between 1 and 2h nodes inclusive at the last level h.
Design an algorithm that runs in less than O(n) time complexity.
Example 1:
Input: root = [1,2,3,4,5,6]
Output: 6
Example 2:
Input: root = []
Output: 0
Example 3:
Input: root = [1]
Output: 1
Constraints:
The number of nodes in the tree is in the range [0, 5 * 104].
0 <= Node.val <= 5 * 104
The tree is guaranteed to be complete.
*/
// Definition for a binary tree node.
import 'dart:collection';
import 'dart:math';
class TreeNode {
int val;
TreeNode? left;
TreeNode? right;
TreeNode([this.val = 0, this.left, this.right]);
}
class A {
int countNodes(TreeNode? root) {
if (root == null) return 0;
return countNodes(root.left) + countNodes(root.right) + 1;
}
}
class B {
int countNodes(TreeNode? root) {
if (root == null) {
return 0;
}
int left = 0, right = 0;
TreeNode? leftNode = root, rightNode = root;
while (leftNode != null) {
left++;
leftNode = leftNode.left;
}
while (rightNode != null) {
right++;
rightNode = rightNode.right;
}
if (left == right) {
return pow(2, right).toInt() - 1;
}
return 1 + countNodes(root.left) + countNodes(root.right);
}
}
class C {
int count = 0;
void solve(
TreeNode? root,
) {
if (root == null) return;
count++;
if (root.left != null) solve(root.left);
if (root.right != null) solve(root.right);
}
int countNodes(TreeNode? root) {
solve(root);
return count;
}
}
class D {
int countNodes(TreeNode? root) {
int count = 0;
if (root == null) return 0;
Queue<TreeNode?> q = Queue();
q.add(root);
while (!q.isEmpty) {
root = q.first;
q.removeFirst();
if (root == null) {
if (!q.isEmpty) q.add(null);
} else {
count++;
if (root.left != null) q.add(root.left);
if (root.right != null) q.add(root.right);
}
}
return count;
}
}