-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcourse_schedule.dart
213 lines (168 loc) · 5.29 KB
/
course_schedule.dart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/*
-* Course Schedule *-
There are a total of numCourses courses you have to take, labeled from 0 to numCourses - 1. You are given an array prerequisites where prerequisites[i] = [ai, bi] indicates that you must take course bi first if you want to take course ai.
For example, the pair [0, 1], indicates that to take course 0 you have to first take course 1.
Return true if you can finish all courses. Otherwise, return false.
Example 1:
Input: numCourses = 2, prerequisites = [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.
Example 2:
Input: numCourses = 2, prerequisites = [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
Constraints:
1 <= numCourses <= 2000
0 <= prerequisites.length <= 5000
prerequisites[i].length == 2
0 <= ai, bi < numCourses
All the pairs prerequisites[i] are unique.
*/
// Topological Sort
// class Solution {
// bool canFinish(int numCourses, List<List<int>> prerequisites) {}
// }
import 'dart:collection';
class A {
bool canFinish(int numCourses, List<List<int>> prerequisites) {
final List<int> answer = [];
final Map<int, List<int>> map = Map();
final List<int> result = List<int>.filled(numCourses, 0);
for (final List<int> x in prerequisites) {
map[x[1]] = [...map[x[1]] ?? [], x[0]];
result[x[0]]++;
}
final Queue<int> q = Queue<int>();
for (int i = 0; i < numCourses; i++) {
if (result[i] == 0) {
q.add(i);
}
}
while (q.isNotEmpty) {
final int fr = q.removeFirst();
answer.add(fr);
for (final int x in map[fr] ?? []) {
result[x]--;
if (result[x] == 0) {
q.add(x);
}
}
}
return answer.length == numCourses;
}
}
// Union Find - Wrong
class F {
bool canFinish(int numCourses, List<List<int>> prerequisites) {
List<int> par = List<int>.generate(numCourses, (index) => index);
List<int> rank = List<int>.filled(numCourses, 0);
for (var pre in prerequisites) {
int x = pre[0];
int y = pre[1];
if (find(par, x) == find(par, y)) {
return false; // Cycle detected
}
union(par, rank, x, y);
}
return true;
}
int find(List<int> par, int x) {
if (par[x] != x) {
par[x] = find(par, par[x]);
}
return par[x];
}
void union(List<int> par, List<int> rank, int x, int y) {
int rootX = find(par, x);
int rootY = find(par, y);
if (rootX != rootY) {
if (rank[rootX] < rank[rootY]) {
par[rootX] = rootY;
} else if (rank[rootX] > rank[rootY]) {
par[rootY] = rootX;
} else {
par[rootY] = rootX;
rank[rootX]++;
}
}
}
}
// Correct
class B {
bool canFinish(int numCourses, List<List<int>> prerequisites) {
final List<List<int>> graph = List<List<int>>.generate(numCourses, (_) => []);
for (var pre in prerequisites) {
final int x = pre[0];
final int y = pre[1];
graph[x].add(y);
}
final List<int> visited = List<int>.filled(numCourses, 0);
for (int i = 0; i < numCourses; i++) {
if (hasCycle(graph, visited, i)) {
return false; // Cycle detected
}
}
return true;
}
bool hasCycle(List<List<int>> graph, List<int> visited, int node) {
if (visited[node] == 1) {
return true; // Cycle detected
}
if (visited[node] == -1) {
return false; // Already visited and no cycle
}
visited[node] = 1; // Mark node as visited
for (final int neighbor in graph[node]) {
if (hasCycle(graph, visited, neighbor)) {
return true; // Cycle detected
}
}
visited[node] = -1; // Mark node as visited and no cycle
return false;
}
}
class Solution {
bool canFinish(int numCourses, List<List<int>> prerequisites) {
final List<List<int>> graph = List<List<int>>.generate(
numCourses, (_) => List<int>.filled(numCourses, 0));
// Create graph representation - adjacency matrix.
for (int i = 0; i < prerequisites.length; i++) {
graph[prerequisites[i][1]][prerequisites[i][0]] = 1;
}
return topoSort(graph, numCourses);
}
bool topoSort(List<List<int>> graph, int numCourses) {
final List<bool> visited = List<bool>.filled(numCourses, false);
final List<bool> tempMarked = List<bool>.filled(numCourses, false);
final List<int> path = [];
for (int i = 0; i < numCourses; i++) {
if (!visited[i] && !dfsVisit(graph, i, path, visited, tempMarked)) {
return false;
}
}
// TopoSort builds the actual schedule in the path.
return path.length == numCourses;
}
bool dfsVisit(List<List<int>> graph, int course, List<int> path,
List<bool> visited, List<bool> tempMarked) {
if (tempMarked[course]) {
return false;
}
if (!visited[course]) {
tempMarked[course] = true;
for (int i = 0; i < graph.length; i++) {
if (graph[course][i] == 1) {
if (!dfsVisit(graph, i, path, visited, tempMarked)) {
return false;
}
}
}
tempMarked[course] = false;
visited[course] = true;
path.add(course);
}
return true;
}
}