-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdesign_circular_queue.dart
264 lines (220 loc) · 6.04 KB
/
design_circular_queue.dart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/*
-* Design a Circle Queue *-
Design your implementation of the circular queue.
The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out)
principle and the last position is connected back to the first position to make a circle. It is also called "Ring Buffer".
One of the benefits of the circular queue is that we can make use of the spaces in front of the queue.
In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue.
But using the circular queue, we can use the space to store new values.
Implementation the MyCircularQueue class:
MyCircularQueue(k) Initializes the object with the size of the queue to be k.
int Front() Gets the front item from the queue. If the queue is empty, return -1.
int Rear() Gets the last item from the queue. If the queue is empty, return -1.
boolean enQueue(int value) Inserts an element into the circular queue. Return true if the operation is successful.
boolean deQueue() Deletes an element from the circular queue. Return true if the operation is successful.
boolean isEmpty() Checks whether the circular queue is empty or not.
boolean isFull() Checks whether the circular queue is full or not.
You must solve the problem without using the built-in queue data structure in your programming language.
Example 1:
Input
["MyCircularQueue", "enQueue", "enQueue", "enQueue", "enQueue", "Rear", "isFull", "deQueue", "enQueue", "Rear"]
[[3], [1], [2], [3], [4], [], [], [], [4], []]
Output
[null, true, true, true, false, 3, true, true, true, 4]
Explanation
MyCircularQueue myCircularQueue = new MyCircularQueue(3);
myCircularQueue.enQueue(1); // return True
myCircularQueue.enQueue(2); // return True
myCircularQueue.enQueue(3); // return True
myCircularQueue.enQueue(4); // return False
myCircularQueue.Rear(); // return 3
myCircularQueue.isFull(); // return True
myCircularQueue.deQueue(); // return True
myCircularQueue.enQueue(4); // return True
myCircularQueue.Rear(); // return 4
Constraints:
1 <= k <= 1000
0 <= value <= 1000
At most 3000 calls will be made to enQueue, deQueue, Front, Rear, isEmpty, and isFull.
*/
/*
*
* Your MyCircularQueue object will be instantiated and called as such:
* MyCircularQueue obj = MyCircularQueue(k);
* bool param1 = obj.enQueue(value);
* bool param2 = obj.deQueue();
* int param3 = obj.Front();
* int param4 = obj.Rear();
* bool param5 = obj.isEmpty();
* bool param6 = obj.isFull();
*
*/
class MyCircularQueue {
// Runtime: 512 ms, faster than 100.00% of Dart online submissions for Design Circular Queue.
// Memory Usage: 151.6 MB, less than 50.00% of Dart online submissions for Design Circular Queue.
// MyCircularQueue
late List<int> a;
int front = 0;
int rear = -1;
int len = 0;
MyCircularQueue(int k) {
this.a = [k];
a = List.filled(k, 0);
this.front;
this.rear;
this.len;
}
bool enQueue(int value) {
if (!isFull()) {
if (++rear == a.length) rear = 0;
a[rear] = value;
len++;
return true;
} else
return false;
}
bool deQueue() {
if (!isEmpty()) {
if (++front == a.length) front = 0;
len--;
return true;
} else
return false;
}
int Front() {
return isEmpty() ? -1 : a[front];
}
int Rear() {
return isEmpty() ? -1 : a[rear];
}
bool isEmpty() {
return len == 0;
}
bool isFull() {
return len == a.length;
}
}
class MyCircularQueue1 {
// Runtime: 620 ms, faster than 50.00% of Dart online submissions for Design Circular Queue.
// Memory Usage: 151.7 MB, less than 50.00% of Dart online submissions for Design Circular Queue.
int front = -1;
int rear = -1;
late List<int> arr;
int cap = 0;
MyCircularQueue1(int k) {
arr = List.filled(k, 0);
front;
cap = k;
rear;
}
int next(int i) {
// to get next idx after i in circular queue
return (i + 1) % cap;
}
int prev(int i) {
// to get prev idx before i in circular queue
return (i + cap - 1) % cap;
}
bool enQueue(int value) {
if (isFull()) return false;
if (front == -1) {
front = 0;
rear = 0;
arr[rear] = value;
return true;
}
rear = next(rear);
arr[rear] = value;
return true;
}
bool deQueue() {
if (isEmpty()) return false;
if (front == rear) {
front = -1;
rear = -1;
return true;
}
front = next(front);
return true;
}
int Front() {
if (front == -1) return -1;
return arr[front];
}
int Rear() {
if (rear == -1) return -1;
return arr[rear];
}
bool isEmpty() {
return front == -1;
}
bool isFull() {
return front != -1 && next(rear) == front;
}
}
class ListNode {
late int val;
ListNode? prev, next;
ListNode(int x) {
val = x;
prev = null;
next = null;
}
}
class C {
// Runtime: 644 ms, faster than 50.00% of Dart online submissions for Design Circular Queue.
// Memory Usage: 153.5 MB, less than 50.00% of Dart online submissions for Design Circular Queue.
late int queueSize, currSize;
late ListNode head, tail;
// MyCircularQueue
C(int k) {
queueSize = k;
currSize = 0;
head = ListNode(-1);
tail = ListNode(-1);
head.next = tail;
tail.prev = head;
}
bool enQueue(int value) {
if (isFull()) {
return false;
}
ListNode newNode = new ListNode(value);
newNode.next = tail;
newNode.prev = tail.prev;
tail.prev!.next = newNode;
tail.prev = newNode;
currSize++;
return true;
}
bool deQueue() {
if (isEmpty()) {
return false;
}
ListNode? toBeDeleted = head.next;
head.next = toBeDeleted!.next;
toBeDeleted.next!.prev = head;
toBeDeleted.next = null;
toBeDeleted.prev = null;
currSize--;
return true;
}
int Front() {
if (isEmpty()) {
return -1;
}
return head.next!.val;
}
int Rear() {
if (isEmpty()) {
return -1;
}
return tail.prev!.val;
}
bool isEmpty() {
return currSize == 0;
}
bool isFull() {
return currSize == queueSize;
}
}