-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathimplement_queue_using_stacks.dart
195 lines (138 loc) · 4.68 KB
/
implement_queue_using_stacks.dart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
// /*
// -* Implement Queue using Stacks *-
// Implement a first in first out (FIFO) queue using only two stacks. The implemented queue should support all the functions of a normal queue (push, peek, pop, and empty).
// Implement the MyQueue class:
// void push(int x) Pushes element x to the back of the queue.
// int pop() Removes the element from the front of the queue and returns it.
// int peek() Returns the element at the front of the queue.
// boolean empty() Returns true if the queue is empty, false otherwise.
// Notes:
// You must use only standard operations of a stack, which means only push to top, peek/pop from top, size, and is empty operations are valid.
// Depending on your language, the stack may not be supported natively. You may simulate a stack using a list or deque (double-ended queue) as long as you use only a stack's standard operations.
// Example 1:
// Input
// ["MyQueue", "push", "push", "peek", "pop", "empty"]
// [[], [1], [2], [], [], []]
// Output
// [null, null, null, 1, 1, false]
// Explanation
// MyQueue myQueue = new MyQueue();
// myQueue.push(1); // queue is: [1]
// myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
// myQueue.peek(); // return 1
// myQueue.pop(); // return 1, queue is [2]
// myQueue.empty(); // return false
// Constraints:
// 1 <= x <= 9
// At most 100 calls will be made to push, pop, peek, and empty.
// All the calls to pop and peek are valid.
// Follow-up: Can you implement the queue such that each operation is amortized O(1) time complexity? In other words, performing n operations will take overall O(n) time even if one of those operations may take longer.
// */
// // class MyQueue {
// // // Runtime: 571 ms, faster than 7.69% of Dart online submissions for Implement Queue using Stacks.
// // // Memory Usage: 145 MB, less than 15.38% of Dart online submissions for Implement Queue using Stacks.
// // Queue<int> ins = Queue();
// // Queue<int> out = Queue();
// // MyQueue() {
// // this.ins;
// // this.out;
// // }
// // void push(int x) {
// // ins.add(x);
// // }
// // int pop() {
// // if (out.isEmpty) while (ins.isNotEmpty) out.add(ins.removeLast());
// // return out.removeLast();
// // }
// // int peek() {
// // if (out.isEmpty) while (ins.isNotEmpty) out.add(ins.removeLast());
// // // peek
// // return out.first;
// // }
// // bool empty() {
// // return ins.isEmpty && out.isEmpty;
// // }
// // }
// /*
// class MyQueue {
// MyQueue() {
// }
// void push(int x) {
// }
// int pop() {
// }
// int peek() {
// }
// bool empty() {
// }
// }
// */
// abstract class Stack<T> {
// // Pushes element to the top of the stack.
// void push(T value);
// // Removes the element at the top of the stack and returns it.
// T pop();
// // Returns the element at the top of the stack.
// peek();
// // Returns true if the stack is empty, false otherwise.
// bool get isEmpty;
// }
// abstract class Queue<T> {
// // Pushes element [value] to the back of the queue.
// void push(T value);
// // Removes the element from the front of the queue and returns it.
// T pop();
// // Returns the element at the front of the queue.
// T peek();
// // Returns true if the queue is empty, false otherwise.
// bool get isEmpty;
// }
// // class CollectionStack<T> implements Stack<T> {
// // CollectionStack(this._internal);
// // final c.Queue<T> _internal;
// // @override
// // void push(T value) => _internal.addLast(value);
// // @override
// // T pop() => _internal.removeLast();
// // @override
// // T peek() => _internal.last;
// // @override
// // bool get isEmpty => _internal.isEmpty;
// // }
// class DoubleStackQueue<T> implements Queue<T> {
// DoubleStackQueue(
// this._pushStack,
// this._popStack,
// ) : _phase = _Phase.push;
// final Stack<T> _pushStack;
// final Stack<T> _popStack;
// _Phase _phase;
// // [phase] is the new phase.
// void _switchPhase(_Phase phase) {
// if (_phase == phase) return;
// if (phase == _Phase.push) {
// while (!_popStack.isEmpty) _pushStack.push(_popStack.pop());
// } else {
// while (!_pushStack.isEmpty) _popStack.push(_pushStack.pop());
// }
// _phase = phase;
// }
// @override
// void push(T value) {
// _switchPhase(_Phase.push);
// _pushStack.push(value);
// }
// @override
// T pop() {
// _switchPhase(_Phase.pop);
// return _popStack.pop();
// }
// @override
// T peek() {
// _switchPhase(_Phase.pop);
// return _popStack.peek();
// }
// @override
// bool get isEmpty => _pushStack.isEmpty && _popStack.isEmpty;
// }
// enum _Phase { push, pop }