-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathintersection_of_two_linked_lists.dart
186 lines (141 loc) · 5.64 KB
/
intersection_of_two_linked_lists.dart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/*
-* Intersection of Two Linked Lists *-
Given the heads of two singly linked-lists headA and headB, return the node at which the two lists intersect. If the two linked lists have no intersection at all, return null.
For example, the following two linked lists begin to intersect at node c1:
The test cases are generated such that there are no cycles anywhere in the entire linked structure.
Note that the linked lists must retain their original structure after the function returns.
Custom Judge:
The inputs to the judge are given as follows (your program is not given these inputs):
intersectVal - The value of the node where the intersection occurs. This is 0 if there is no intersected node.
listA - The first linked list.
listB - The second linked list.
skipA - The number of nodes to skip ahead in listA (starting from the head) to get to the intersected node.
skipB - The number of nodes to skip ahead in listB (starting from the head) to get to the intersected node.
The judge will then create the linked structure based on these inputs and pass the two heads, headA and headB to your program. If you correctly return the intersected node, then your solution will be accepted.
Example 1:
Input: intersectVal = 8, listA = [4,1,8,4,5], listB = [5,6,1,8,4,5], skipA = 2, skipB = 3
Output: Intersected at '8'
Explanation: The intersected node's value is 8 (note that this must not be 0 if the two lists intersect).
From the head of A, it reads as [4,1,8,4,5]. From the head of B, it reads as [5,6,1,8,4,5]. There are 2 nodes before the intersected node in A; There are 3 nodes before the intersected node in B.
- Note that the intersected node's value is not 1 because the nodes with value 1 in A and B (2nd node in A and 3rd node in B) are different node references. In other words, they point to two different locations in memory, while the nodes with value 8 in A and B (3rd node in A and 4th node in B) point to the same location in memory.
Example 2:
Input: intersectVal = 2, listA = [1,9,1,2,4], listB = [3,2,4], skipA = 3, skipB = 1
Output: Intersected at '2'
Explanation: The intersected node's value is 2 (note that this must not be 0 if the two lists intersect).
From the head of A, it reads as [1,9,1,2,4]. From the head of B, it reads as [3,2,4]. There are 3 nodes before the intersected node in A; There are 1 node before the intersected node in B.
Example 3:
Input: intersectVal = 0, listA = [2,6,4], listB = [1,5], skipA = 3, skipB = 2
Output: No intersection
Explanation: From the head of A, it reads as [2,6,4]. From the head of B, it reads as [1,5]. Since the two lists do not intersect, intersectVal must be 0, while skipA and skipB can be arbitrary values.
Explanation: The two lists do not intersect, so return null.
Constraints:
The number of nodes of listA is in the m.
The number of nodes of listB is in the n.
1 <= m, n <= 3 * 104
1 <= Node.val <= 105
0 <= skipA < m
0 <= skipB < n
intersectVal is 0 if listA and listB do not intersect.
intersectVal == listA[skipA] == listB[skipB] if listA and listB intersect.
Follow up: Could you write a solution that runs in O(m + n) time and use only O(1) memory?
*/
import 'dart:collection';
class ListNode {
int val;
ListNode? next;
ListNode([this.val = 0, this.next]);
}
class A {
ListNode? getIntersectionNode(ListNode? headA, headB) {
ListNode? currentA = headA, currentB = headB;
while (currentA != currentB) {
if (currentA != null)
currentA = currentA.next;
else
currentA = headB;
if (currentB != null)
currentB = currentB.next;
else
currentB = headA;
}
return currentA;
}
}
class B {
ListNode? getIntersectionNode(ListNode? headA, headB) {
HashSet<ListNode> hashSet = HashSet();
while (headA != null) {
hashSet.add(headA);
headA = headA.next;
}
while (headB != null) {
if (!hashSet.add(headB)) {
return headB;
}
headB = headB.next;
}
return null;
}
}
class C {
ListNode? getIntersectionNode(ListNode? headA, headB) {
if (headA == null || headB == null) return null;
ListNode? a = headA;
ListNode? b = headB;
//if a & b have different len, then we will stop the loop after second iteration
while (a != b) {
//for the end of first iteration, we just reset the pointer to the head of another linkedlist
a = a == null ? headB : a.next;
b = b == null ? headA : b.next;
}
return a;
}
}
class D {
// O(m+n)
ListNode? getIntersectionNode(ListNode? headA, headB) {
// Count the number of nodes in
// both the linked list
int c1 = getCount(headA);
int c2 = getCount(headB);
int d;
// If first is greater
if (c1 > c2) {
d = c1 - c2;
return _getIntersectionNode(d, headA, headB);
} else {
d = c2 - c1;
return _getIntersectionNode(d, headB, headA);
}
}
int getCount(ListNode? head) {
int count = 0;
while (head != null) {
count++;
head = head.next;
}
return count;
}
ListNode? _getIntersectionNode(int d, ListNode? head1, ListNode? head2) {
// Stand at the starting of the bigger list
ListNode? current1 = head1;
ListNode? current2 = head2;
// Move the pointer forward after d nodes
for (int i = 0; i < d; i++) {
if (current1 == null) {
return null;
}
current1 = current1.next;
}
// Move both pointers of both list till they
// intersect with each other
while (current1 != null && current2 != null) {
if (current1 == current2) return current1;
// Move both the pointers forward
current1 = current1.next;
current2 = current2.next;
return null;
}
return null;
}
}