-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmaximum_depth_of_binary_tree.dart
91 lines (71 loc) · 2.62 KB
/
maximum_depth_of_binary_tree.dart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
/*
-* Maximum Depth of Binary Tree *-
Given the root of a binary tree, return its maximum depth.
A binary tree's maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.
Example 1:
Input: root = [3,9,20,null,null,15,7]
Output: 3
Example 2:
Input: root = [1,null,2]
Output: 2
Constraints:
The number of nodes in the tree is in the range [0, 104].
-100 <= Node.val <= 100
*/
// Definition for a binary tree node.
import 'dart:collection';
import 'dart:math';
class TreeNode {
int val;
TreeNode? left;
TreeNode? right;
TreeNode([this.val = 0, this.left, this.right]);
}
// Approach : Recursive Solution
class A {
// Runtime: 538 ms, faster than 14.29% of Dart online submissions for Maximum Depth of Binary Tree.
// Memory Usage: 141.9 MB, less than 85.71% of Dart online submissions for Maximum Depth of Binary Tree.
int maxDepth(TreeNode? root) {
// simply the if the root is null it means it's length is zero
if (root == null) return 0;
// from the left size length of the root tree all elements on left
int leftHeight = maxDepth(root.left);
// from the right side the length of all elements
int rightHeight = maxDepth(root.right);
// using max to find the length because it's start from zero (index) so
// we add one to start from point 1
return 1 + max(leftHeight, rightHeight);
}
}
// Approach : Level Order Traversal
class B {
// Runtime: 437 ms, faster than 50.00% of Dart online submissions for Maximum Depth of Binary Tree.
// Memory Usage: 145.7 MB, less than 21.43% of Dart online submissions for Maximum Depth of Binary Tree.
int maxDepth(TreeNode? root) {
// if the whole root is empty it's length is zero
if (root == null) return 0;
// using Queue to manipulate values from both ends
Queue<TreeNode?> q = Queue();
// depth hold our result like how much deep our queue is.
// based on it's length
int queueDepth = 0;
// adding the whole root tree inside queue
q.add(root);
// while it's not empty
while (q.isNotEmpty) {
// we get the length of the whole queue
int size = q.length;
// iterate through each element inside queue
for (int i = 0; i < size; i++) {
// than we will remove the first element from the tree
TreeNode? node = q.removeFirst();
// if left and right are not null of anything empty we will add the both left and right
if (node?.left != null) q.add(node?.left);
if (node?.right != null) q.add(node?.right);
}
// after adding we will increment the value
queueDepth++;
}
return queueDepth;
}
}