-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmaximum_difference_between_node_and_ancestor.dart
131 lines (100 loc) · 3.12 KB
/
maximum_difference_between_node_and_ancestor.dart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/*
-* 1026. Maximum Difference Between Node and Ancestor *-
Given the root of a binary tree, find the maximum value v for which there exist different nodes a and b where v = |a.val - b.val| and a is an ancestor of b.
A node a is an ancestor of b if either: any child of a is equal to b or any child of a is an ancestor of b.
Example 1:
Input: root = [8,3,10,1,6,null,14,null,null,4,7,13]
Output: 7
Explanation: We have various ancestor-node differences, some of which are given below :
|8 - 3| = 5
|3 - 7| = 4
|8 - 1| = 7
|10 - 13| = 3
Among all possible differences, the maximum value of 7 is obtained by |8 - 1| = 7.
Example 2:
Input: root = [1,null,2,null,0,3]
Output: 3
Constraints:
The number of nodes in the tree is in the range [2, 5000].
0 <= Node.val <= 105
*/
// Definition for a binary tree node.
import 'dart:math';
class TreeNode {
int val;
TreeNode? left;
TreeNode? right;
TreeNode([this.val = 0, this.left, this.right]);
}
class A {
int m = 0;
List<int>? dfs(TreeNode? root) {
if (root == null) return null;
List<int>? left = dfs(root.left);
List<int>? right = dfs(root.right);
if (left == null && right == null) {
return [root.val, root.val];
}
int mini = root.val;
int maxi = root.val;
if (left != null) {
m = max(m, (left[0] - root.val).abs());
m = max(m, (left[1] - root.val).abs());
mini = min(mini, left[0]);
maxi = max(maxi, left[1]);
}
if (right != null) {
m = max(m, (right[0] - root.val).abs());
m = max(m, (right[1] - root.val).abs());
mini = min(mini, right[0]);
maxi = max(maxi, right[1]);
}
return [mini, maxi];
}
int maxAncestorDiff(TreeNode? root) {
if (root == null) return 0;
dfs(root);
return m;
}
}
class B {
/*
Maintain a min and max seen so far as we explore the tree in DFS fashion.
At every node, we can update the ret by comparing it with min and max.
*/
int ret = 0;
void helper(TreeNode? current, int mini, int maxi) {
if (current != null) {
ret = max(ret, (mini - current.val).abs());
ret = max(ret, (maxi - current.val).abs());
if (current.left != null)
helper(current.left, min(mini, current.left!.val),
max(maxi, current.left!.val));
if (current.right != null)
helper(current.right, min(mini, current.right!.val),
max(maxi, current.right!.val));
}
}
int maxAncestorDiff(TreeNode? root) {
helper(root, root!.val, root.val);
return ret;
}
}
class C {
int maxVal(TreeNode? root, int min, int max, int maxValTotal) {
if (root == null) return maxValTotal;
if (root.val > max)
max = root.val;
else if (root.val < min) min = root.val;
maxValTotal = (max - min).abs();
int maxValLeft = maxVal(root.left, min, max, maxValTotal);
if (maxValLeft > maxValTotal) maxValTotal = maxValLeft;
int maxValRight = maxVal(root.right, min, max, maxValTotal);
if (maxValRight > maxValTotal) maxValTotal = maxValRight;
return maxValTotal;
}
int maxAncestorDiff(TreeNode? root) {
int value = maxVal(root, root!.val, root.val, 0);
return value;
}
}