-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsymmetric_tree.dart
209 lines (176 loc) · 5.67 KB
/
symmetric_tree.dart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/*
-* Symmetric Tree *-
Given the root of a binary tree, check whether it is a mirror of itself (i.e., symmetric around its center).
Example 1:
Input: root = [1,2,2,3,4,4,3]
Output: true
Example 2:
Input: root = [1,2,2,null,3,null,3]
Output: false
Constraints:
The number of nodes in the tree is in the range [1, 1000].
-100 <= Node.val <= 100
Follow up: Could you solve it both recursively and iteratively?
*/
import 'dart:collection';
// Definition for a binary tree node.
class TreeNode {
int val;
TreeNode? left;
TreeNode? right;
TreeNode([this.val = 0, this.left, this.right]);
}
class Recursive {
// With - ? Operator
// Runtime: 501 ms, faster than 37.50% of Dart online submissions for Symmetric Tree.
// Memory Usage: 142.1 MB, less than 93.75% of Dart online submissions for Symmetric Tree.
// With - ! Operator
// Runtime: 532 ms, faster than 25.00% of Dart online submissions for Symmetric Tree.
// Memory Usage: 141.9 MB, less than 93.75% of Dart online submissions for Symmetric Tree.
bool findSymmetricity(TreeNode? firstNode, TreeNode? secondNode) {
if (firstNode == null && secondNode == null) return true;
if (firstNode != null && secondNode == null ||
firstNode == null && secondNode != null ||
firstNode?.val != secondNode?.val) return false;
return findSymmetricity(firstNode?.left, secondNode?.right) &&
findSymmetricity(firstNode?.right, secondNode?.left);
}
bool isSymmetric(TreeNode? root) {
return findSymmetricity(root, root);
}
}
// Iterative(Using BFS Technique)
// class Iterative {
// bool isSymmetric(TreeNode? root) {
// if (root == null) return true;
// Queue<TreeNode?> queue = Queue<TreeNode?>();
// // addLast is push
// queue.addLast(root);
// int l = 1;
// while (queue.isNotEmpty) {
// int queueSize = queue.length;
// int sizeValue = 2 * queueSize;
// List<int> value = [sizeValue];
// int cntNull = 0;
// for (int i = 0; i < queueSize; i++) {
// // queue.front
// TreeNode? node = queue.first;
// queue.removeLast();
// if (node?.left != null) {
// value[i] = node?.left?.val as int;
// queue.addLast(node?.left);
// } else {
// value[i] = -200;
// cntNull++;
// }
// if (node?.right != null) {
// value[i + queueSize] = node?.right?.val as int;
// queue.addLast(node?.right);
// } else {
// value[i + queueSize] = -200;
// cntNull++;
// }
// }
// if (cntNull == sizeValue) break;
// for (int i = 0; i < (sizeValue / 2); i++) {
// if (value[i] != value[sizeValue - i - 1]) {
// return false;
// }
// }
// value.remove([]);
// }
// return true;
// }
// }
// class C {
// bool isSymmetric(TreeNode? root) {
// if (root == null) return false;
// Queue<TreeNode?> q = Queue<TreeNode?>();
// q.add(root);
// while (q.isNotEmpty) {
// int count = q.length;
// List<int> arr = [];
// for (int i = 0; i < count; ++i) {
// TreeNode? currNode = q.removeLast();
// if (currNode == null)
// arr.add(200);
// else
// arr.add(currNode.val);
// if (currNode?.left == null)
// q.add(null);
// else if (currNode?.left != null) q.add(currNode?.left);
// if (currNode?.right == null)
// q.add(null);
// else if (currNode?.right != null) q.add(currNode?.right);
// }
// int i = 0, j = arr.length - 1;
// //comparing palindrome
// //if the all the values are 200 -> leaf condition
// while (i <= j) {
// if (arr.elementAt(i) == 200 && arr.elementAt(j) == 200) {
// i++;
// j--;
// continue;
// }
// if (arr.elementAt(i) != arr.elementAt(j)) {
// return false;
// }
// i++;
// j--;
// }
// }
// return true;
// }
// }
// class D {
// bool isSymmetric(TreeNode? root) {
// List<TreeNode?> nodesToTraverse = [root];
// while (nodesToTraverse.length != 0) {
// List level = [];
// List symmetryStack = [];
// int childrenCount = nodesToTraverse.length;
// for (int i = 0; i < childrenCount; i++) {
// TreeNode? node = nodesToTraverse.removeAt(0);
// if (i < childrenCount / 2) {
// symmetryStack.add(node?.val);
// } else {
// if (symmetryStack[symmetryStack.length - 1] != node?.val) {
// return false;
// } else {
// symmetryStack.removeLast();
// }
// }
// if (node != null) {
// continue;
// }
// level.add(node?.left);
// level.add(node?.right);
// }
// nodesToTraverse.add(level);
// }
// return true;
// }
// }
class Iterative {
// Runtime: 529 ms, faster than 31.25% of Dart online submissions for Symmetric Tree.
// Memory Usage: 144.7 MB, less than 12.50% of Dart online submissions for Symmetric Tree.
bool isSymmetric(TreeNode? root) {
if (root == null) return true;
Queue<TreeNode?> queue = Queue<TreeNode?>();
queue.add(root.left);
queue.add(root.right);
while (queue.isNotEmpty) {
TreeNode? firstNode = queue.removeFirst();
TreeNode? secondNode = queue.removeFirst();
if (firstNode == null && secondNode == null) continue;
if (firstNode == null ||
secondNode == null ||
secondNode.val != secondNode.val) return false;
queue.add(firstNode.left);
queue.add(secondNode.right);
queue.add(firstNode.right);
queue.add(secondNode.left);
}
return true;
}
}