-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtoeplitz_matrix.dart
186 lines (154 loc) · 5.06 KB
/
toeplitz_matrix.dart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/*
-* Toeplitz Matrix *-
Given an m x n matrix, return true if the matrix is Toeplitz. Otherwise, return false.
A matrix is Toeplitz if every diagonal from top-left to bottom-right has the same elements.
Example 1:
Input: matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]]
Output: true
Explanation:
In the above grid, the diagonals are:
"[9]", "[5, 5]", "[1, 1, 1]", "[2, 2, 2]", "[3, 3]", "[4]".
In each diagonal all elements are the same, so the answer is True.
Example 2:
Input: matrix = [[1,2],[2,2]]
Output: false
Explanation:
The diagonal "[1, 2]" has different elements.
Constraints:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 20
0 <= matrix[i][j] <= 99
Follow up:
What if the matrix is stored on disk, and the memory is limited such that you can only load at most one row of the matrix into the memory at once?
What if the matrix is so large that you can only load up a partial row into the memory at once?
*/
import 'dart:collection';
class A {
bool isToeplitzMatrix(List<List<int>> matrix) {
for (int i = 0; i < matrix.length - 1; i++) {
for (int j = 0; j < matrix[0].length - 1; j++) {
int ele = matrix[i][j];
if (i < matrix.length - 1 &&
j < matrix[0].length - 1 &&
matrix[i + 1][j + 1] != ele) {
return false;
}
}
}
return true;
}
}
// Solution when Only Load Data One Row at a Time
class B {
bool isToeplitzMatrix(List<List<int>> matrix) {
if (matrix.length <= 1 || matrix[0].length <= 1) return true;
Queue<int> q = Queue();
for (int i = matrix[0].length - 1; i >= 0; i--) {
//set criteria
q.add(matrix[0][i]);
}
for (int j = 1; j < matrix.length; j++) {
q.removeFirst();
for (int k = matrix[j].length - 1; k > 0; k--) {
if (matrix[j][k] == q.removeFirst()) // compare
q.add(matrix[j][k]);
else
return false;
}
q.add(matrix[j][0]);
}
return true;
}
}
// Solution when Only Load Data One Column at a Time
class C {
bool isToeplitzMatrix(List<List<int>> matrix) {
int totalRows = matrix.length;
int totalColumns = matrix[0].length;
// Initiate the linked list and add the first column to the linked list.
List<int> linkedList = [];
for (int i = 0; i < totalRows; i++) linkedList.add(matrix[i][0]);
for (int column = 1; column < totalColumns; column++) {
// Check the column to see if any is not identical to the linked list elements.
for (int row = 1; row < totalRows; row++)
if (matrix[row][column] != linkedList[row - 1]) return false;
// Update the linked list for the next line.
linkedList.remove(linkedList.length - 1);
linkedList.insert(0, matrix[0][column]);
}
return true;
}
}
//
class D {
bool isToeplitzMatrix(List<List<int>> matrix) {
if (matrix.length == 0 || matrix[0].length == 0) {
return true;
}
List<int> buffer = List.filled(matrix[0].length, 0);
for (int j = 0; j < matrix[0].length; j++) {
buffer[j] = matrix[0][j];
}
for (int i = 1; i < matrix.length; i++) {
for (int j = matrix[0].length - 1; j >= 1; j--) {
if (buffer[j - 1] != matrix[i][j]) {
return false;
}
buffer[j] = matrix[i][j];
}
buffer[0] = matrix[i][0];
}
return true;
}
}
// Load a partial row/column each time, the length of "piece" is defined as variable 'step'
class E {
int min(int a, int b) {
return ((a > b) ? b : a);
}
int max(int a, int b) {
return ((a < b) ? b : a);
}
bool isToeplitzMatrix(List<List<int>> matrix) {
int width = matrix[0].length;
int height = matrix.length;
// This step indicates the maximum length of 'piece' which can be loaded at one time.
int step = 3;
int size = 1;
int index = width - 1;
while (index >= 0) {
size = min(index + 1, step);
List<int> memory = List.filled(size, 0);
for (int i = 0; i < size; i++) {
memory[size - i - 1] = matrix[0][index - i]; //set memory
}
for (int j = 1; j < min(height, width); j++) {
//check the related pieces of rows
//set boundary
int rightBound = min(index + j, width - 1);
int leftBound = max(index - step + 1 + j, j);
for (int m = 0, n = leftBound; m < size && n <= rightBound; m++, n++)
if (matrix[j][n] != memory[m]) return false;
}
index -= step;
}
index = 0;
while (index < height) {
//for the purpose of completeness, the criteria should include two sides of the matrix
size = min(height - 1 - index, step);
List<int> memory = List.filled(size, 0);
for (int i = 0; i < size; i++) {
memory[size - 1 - i] = matrix[height - index - 1 - i][0];
}
for (int j = 1; j < min(height, width); j++) {
int upperBound = max(height - index - step + j, j + 1);
int lowerBound = min(height - index - 1 + j, height - 1);
for (int m = 0, n = upperBound; m < size && n <= lowerBound; m++, n++)
if (matrix[n][j] != memory[m]) return false;
}
index += step;
}
return true;
}
}