-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathunique_paths_iii.dart
158 lines (133 loc) · 3.86 KB
/
unique_paths_iii.dart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/*
-* 980. Unique Paths III *-
You are given an m x n integer array grid where grid[i][j] could be:
1 representing the starting square. There is exactly one starting square.
2 representing the ending square. There is exactly one ending square.
0 representing empty squares we can walk over.
-1 representing obstacles that we cannot walk over.
Return the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once.
Example 1:
Input: grid = [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
Output: 2
Explanation: We have the following two paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
Example 2:
Input: grid = [[1,0,0,0],[0,0,0,0],[0,0,0,2]]
Output: 4
Explanation: We have the following four paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
Example 3:
Input: grid = [[0,1],[2,0]]
Output: 0
Explanation: There is no path that walks over every empty square exactly once.
Note that the starting and ending square can be anywhere in the grid.
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 20
1 <= m * n <= 20
-1 <= grid[i][j] <= 2
There is exactly one starting cell and one ending cell.
*/
class A {
int walks = 0;
int res = 0;
static final List<List<int>> values = [
[0, 1],
[0, -1],
[-1, 0],
[1, 0],
];
int uniquePathsIII(List<List<int>> grid) {
res = 0;
walks = 0;
int row = 0, col = 0;
for (int i = 0; i < grid.length; i++) {
for (int j = 0; j < grid[i].length; j++) {
if (grid[i][j] == 0) {
walks++;
} else if (grid[i][j] == 1) {
row = i;
col = j;
}
}
}
dfs(grid, row, col, 0);
return res;
}
void dfs(List<List<int>> grid, int row, int col, int walked) {
if (row < 0 ||
row >= grid.length ||
col < 0 ||
col >= grid[row].length ||
grid[row][col] < 0) {
return;
}
if (grid[row][col] == 2 && walked == walks + 1) {
res++;
return;
}
final int val = grid[row][col];
grid[row][col] = -2;
for (List<int> next in values) {
dfs(grid, row + next[0], col + next[1], walked + 1);
}
grid[row][col] = val;
}
}
class B {
int path = 0;
int sx = 0;
int sy = 0;
int m = 0;
int n = 0;
int zeros = 0;
int uniquePathsIII(List<List<int>> grid) {
m = grid.length;
n = grid[0].length;
List<List<bool>> used =
List.filled(m, false).map((e) => List.filled(n, false)).toList();
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++) {
if (grid[i][j] == 1) {
sx = i;
sy = j;
} else if (grid[i][j] == 0) zeros++;
}
solve(grid, used, sx, sy, 0);
return path;
}
void solve(
List<List<int>> grid, List<List<bool>> used, int x, int y, int cnt) {
if (grid[x][y] == -1) {
return;
}
if (grid[x][y] == 2) {
if (cnt - 1 == zeros) {
path++;
}
return;
}
used[x][y] = true;
if (y + 1 < n && grid[x][y + 1] != -1 && !used[x][y + 1]) {
solve(grid, used, x, y + 1, cnt + 1);
used[x][y + 1] = false;
}
if (x + 1 < m && grid[x + 1][y] != -1 && !used[x + 1][y]) {
solve(grid, used, x + 1, y, cnt + 1);
used[x + 1][y] = false;
}
if (y - 1 >= 0 && grid[x][y - 1] != -1 && !used[x][y - 1]) {
solve(grid, used, x, y - 1, cnt + 1);
used[x][y - 1] = false;
}
if (x - 1 >= 0 && grid[x - 1][y] != -1 && !used[x - 1][y]) {
solve(grid, used, x - 1, y, cnt + 1);
used[x - 1][y] = false;
}
}
}