|
| 1 | +/* |
| 2 | +
|
| 3 | +-* 518. Coin Change II *- |
| 4 | +
|
| 5 | +You are given an integer array coins representing coins of different denominations and an integer amount representing a total amount of money. |
| 6 | +
|
| 7 | +Return the number of combinations that make up that amount. If that amount of money cannot be made up by any combination of the coins, return 0. |
| 8 | +
|
| 9 | +You may assume that you have an infinite number of each kind of coin. |
| 10 | +
|
| 11 | +The answer is guaranteed to fit into a signed 32-bit integer. |
| 12 | +
|
| 13 | + |
| 14 | +
|
| 15 | +Example 1: |
| 16 | +
|
| 17 | +Input: amount = 5, coins = [1,2,5] |
| 18 | +Output: 4 |
| 19 | +Explanation: there are four ways to make up the amount: |
| 20 | +5=5 |
| 21 | +5=2+2+1 |
| 22 | +5=2+1+1+1 |
| 23 | +5=1+1+1+1+1 |
| 24 | +Example 2: |
| 25 | +
|
| 26 | +Input: amount = 3, coins = [2] |
| 27 | +Output: 0 |
| 28 | +Explanation: the amount of 3 cannot be made up just with coins of 2. |
| 29 | +Example 3: |
| 30 | +
|
| 31 | +Input: amount = 10, coins = [10] |
| 32 | +Output: 1 |
| 33 | + |
| 34 | +
|
| 35 | +Constraints: |
| 36 | +
|
| 37 | +1 <= coins.length <= 300 |
| 38 | +1 <= coins[i] <= 5000 |
| 39 | +All the values of coins are unique. |
| 40 | +0 <= amount <= 5000 |
| 41 | +
|
| 42 | +*/ |
| 43 | + |
| 44 | +// Tabulation |
| 45 | +class A { |
| 46 | + int change(int amount, List<int> coins) { |
| 47 | + final int m = coins.length; |
| 48 | + final int n = amount; |
| 49 | + final List<List<int>> dp = |
| 50 | + List.filled(m + 1, 0).map((e) => List.filled(n + 1, 0)).toList(); |
| 51 | + // int dp[m+1][n+1]; |
| 52 | + for (int i = 0; i < m + 1; i++) { |
| 53 | + for (int j = 0; j < n + 1; j++) { |
| 54 | + if (j == 0) { |
| 55 | + dp[i][j] = 1; |
| 56 | + } |
| 57 | + if (i == 0) { |
| 58 | + dp[i][j] = 0; |
| 59 | + } |
| 60 | + } |
| 61 | + } |
| 62 | + dp[0][0] = 1; |
| 63 | + for (int i = 1; i < m + 1; i++) { |
| 64 | + for (int j = 1; j < n + 1; j++) { |
| 65 | + if (coins[i - 1] <= j) { |
| 66 | + dp[i][j] = dp[i][j - coins[i - 1]] + dp[i - 1][j]; |
| 67 | + } else |
| 68 | + dp[i][j] = dp[i - 1][j]; |
| 69 | + } |
| 70 | + } |
| 71 | + return dp[m][n]; |
| 72 | + } |
| 73 | +} |
| 74 | + |
| 75 | +// Dynamic Programming |
| 76 | +class Solution { |
| 77 | + final List<List<int>> dp = |
| 78 | + List.generate(5001, (_) => List<int>.filled(301, -1)); |
| 79 | + int solve(int amount, List<int> coins, int i) { |
| 80 | + if (amount == 0) return 1; |
| 81 | + |
| 82 | + if (dp[amount][i] != -1) return dp[amount][i]; |
| 83 | + |
| 84 | + if (i == coins.length) return 0; |
| 85 | + |
| 86 | + int tk = 0; |
| 87 | + if (coins[i] <= amount) { |
| 88 | + tk = solve(amount - coins[i], coins, i); |
| 89 | + } |
| 90 | + final int nt = solve(amount, coins, i + 1); |
| 91 | + return dp[amount][i] = tk + nt; |
| 92 | + } |
| 93 | + |
| 94 | + int change(int amount, List<int> coins) { |
| 95 | + for (int i = 0; i < 5001; i++) { |
| 96 | + dp[i] = List<int>.filled(301, -1); |
| 97 | + } |
| 98 | + return solve(amount, coins, 0); |
| 99 | + } |
| 100 | +} |
| 101 | + |
| 102 | +// Tabulation with Space Optimization |
| 103 | +class C { |
| 104 | + int change(int amount, List<int> coins) { |
| 105 | + final List<int> dp = List<int>.filled(amount + 1, 0); |
| 106 | + dp[0] = 1; |
| 107 | + for (int i = 0; i < coins.length; i++) { |
| 108 | + for (int j = coins[i]; j <= amount; j++) { |
| 109 | + dp[j] += dp[j - coins[i]]; |
| 110 | + } |
| 111 | + } |
| 112 | + return dp[amount]; |
| 113 | + } |
| 114 | +} |
0 commit comments