@@ -170,11 +170,13 @@ def test_fit_no_warning_if_all_wanted_values_present(self, library):
170
170
df = d .create_df_1 (library = library )
171
171
172
172
transformer = OneHotEncodingTransformer (
173
- columns = ["b" ], wanted_values = {"b" : ["a" , "b" , "c" , "d" , "e" , "f" ]}
173
+ columns = ["b" ],
174
+ wanted_values = {"b" : ["a" , "b" , "c" , "d" , "e" , "f" ]},
174
175
)
175
176
176
- with pytest .warns (None ):
177
+ with pytest .warns (None ) as warnings :
177
178
transformer .fit (df )
179
+ assert len (warnings ) == 0
178
180
179
181
180
182
class TestTransform (
@@ -501,13 +503,16 @@ def test_transform_output_with_wanted_values_arg(self, library):
501
503
)
502
504
def test_transform_no_warning_if_all_wanted_values_present (self , library ):
503
505
"""Test that OneHotEncodingTransformer.transform does NOT raise a warning when all levels in wanted_levels are present in the data."""
504
- df_train = d .create_df_7 (library = library )
505
- df_test = d .create_df_8 (library = library )
506
+ df_train = d .create_df_8 (library = library )
507
+ df_test = d .create_df_7 (library = library )
506
508
507
509
transformer = OneHotEncodingTransformer (
508
- columns = ["b" ], wanted_values = {"b" : ["x" , "z" , "y" ]}
510
+ columns = ["b" ],
511
+ wanted_values = {"b" : ["z" , "y" , "x" ]},
509
512
)
510
513
transformer .fit (df_train )
511
514
512
- with pytest .warns (None ):
515
+ with pytest .warns (None ) as warnings :
513
516
transformer .transform (df_test )
517
+ assert len (warnings ) == 0
518
+
0 commit comments