You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Setting up a new session...
E:\MyPaper\TargetDetection\Ours_SSD\Code\SSD\ssd_-repulsion_-loss\ssd.py:35: UserWarning: volatile was removed and now has no effect. Use with torch.no_grad(): instead.
self.priors = Variable(self.priorbox.forward(), volatile=True)
E:\MyPaper\TargetDetection\Ours_SSD\Code\SSD\ssd_-repulsion_-loss\layers\modules\l2norm.py:17: UserWarning: nn.init.constant is now deprecated in favor of nn.init.constant_.
init.constant(self.weight,self.gamma)
Loading base network...
Initializing weights...
Loading the dataset...
Training SSD on: VOC0712
Using the specified args:
Namespace(basenet='vgg16_reducedfc.pth', batch_size=16, cuda=True, dataset='VOC', dataset_root='E:\MyPaper\TargetDetection\Ours_SSD\Code\SSD\ssd_-repulsion_-loss\data/VOCdevkit/', gamma=0.1, lr=0.0001, momentum=0.9, num_workers=0, resume=None, save_folder='weights/', start_iter=0, visdom=False, weight_decay=0.0005)
E:\MyPaper\TargetDetection\Ours_SSD\Code\SSD\ssd_-repulsion_-loss\utils\augmentations.py:238: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.
mode = random.choice(self.sample_options)
E:/MyPaper/TargetDetection/Ours_SSD/Code/SSD/ssd_-repulsion_-loss/train.py:178: UserWarning: volatile was removed and now has no effect. Use with torch.no_grad(): instead.
targets = [Variable(ann.cuda(), volatile=True) for ann in targets]
Traceback (most recent call last):
File "E:/MyPaper/TargetDetection/Ours_SSD/Code/SSD/ssd_-repulsion_-loss/train.py", line 265, in
train()
File "E:/MyPaper/TargetDetection/Ours_SSD/Code/SSD/ssd_-repulsion_-loss/train.py", line 187, in train
loss_l, loss_l_repul, loss_c = criterion(out, targets)
File "D:\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "E:\MyPaper\TargetDetection\Ours_SSD\Code\SSD\ssd_-repulsion_-loss\layers\modules\multibox_loss.py", line 97, in forward
priors = priors[pos_idx].view(-1, 4)
IndexError: too many indices for tensor of dimension 2
The text was updated successfully, but these errors were encountered:
Setting up a new session...
E:\MyPaper\TargetDetection\Ours_SSD\Code\SSD\ssd_-repulsion_-loss\ssd.py:35: UserWarning: volatile was removed and now has no effect. Use
with torch.no_grad():
instead.self.priors = Variable(self.priorbox.forward(), volatile=True)
E:\MyPaper\TargetDetection\Ours_SSD\Code\SSD\ssd_-repulsion_-loss\layers\modules\l2norm.py:17: UserWarning: nn.init.constant is now deprecated in favor of nn.init.constant_.
init.constant(self.weight,self.gamma)
Loading base network...
Initializing weights...
Loading the dataset...
Training SSD on: VOC0712
Using the specified args:
Namespace(basenet='vgg16_reducedfc.pth', batch_size=16, cuda=True, dataset='VOC', dataset_root='E:\MyPaper\TargetDetection\Ours_SSD\Code\SSD\ssd_-repulsion_-loss\data/VOCdevkit/', gamma=0.1, lr=0.0001, momentum=0.9, num_workers=0, resume=None, save_folder='weights/', start_iter=0, visdom=False, weight_decay=0.0005)
E:\MyPaper\TargetDetection\Ours_SSD\Code\SSD\ssd_-repulsion_-loss\utils\augmentations.py:238: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.
mode = random.choice(self.sample_options)
E:/MyPaper/TargetDetection/Ours_SSD/Code/SSD/ssd_-repulsion_-loss/train.py:178: UserWarning: volatile was removed and now has no effect. Use
with torch.no_grad():
instead.targets = [Variable(ann.cuda(), volatile=True) for ann in targets]
Traceback (most recent call last):
File "E:/MyPaper/TargetDetection/Ours_SSD/Code/SSD/ssd_-repulsion_-loss/train.py", line 265, in
train()
File "E:/MyPaper/TargetDetection/Ours_SSD/Code/SSD/ssd_-repulsion_-loss/train.py", line 187, in train
loss_l, loss_l_repul, loss_c = criterion(out, targets)
File "D:\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "E:\MyPaper\TargetDetection\Ours_SSD\Code\SSD\ssd_-repulsion_-loss\layers\modules\multibox_loss.py", line 97, in forward
priors = priors[pos_idx].view(-1, 4)
IndexError: too many indices for tensor of dimension 2
The text was updated successfully, but these errors were encountered: