-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_nerf_helpers.py
302 lines (227 loc) · 9.44 KB
/
run_nerf_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import os
import sys
import tensorflow as tf
import numpy as np
import imageio
import json
from tensorflow.keras import backend as K
from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten
# Misc utilsS
# GLOBAL VARS FOR SPARSE NN
EPSILON = 20 # control the sparsity level as discussed in the paper
ZETA = 0.3 # the fraction of the weights removed
BATCH_SIZE = 100 # batch size
MAXEPOCHES = 1000 # number of epochs
LEARNING_RATE = 0.01 # SGD LEARNING RATE
NUM_CLASSES = 10 # NUMBER OF CLASSES
MOMENTUM = 0.9 # SGD momentum
class Constraint(object):
def __call__(self, w):
return w
def get_config(self):
return {}
class MaskWeights(Constraint):
def __init__(self, mask):
self.mask = mask
self.mask = K.cast(self.mask, K.floatx())
def __call__(self, w):
w = w * self.mask
return w
def get_config(self):
return {'mask': self.mask}
def find_first_pos(array, value):
idx = (np.abs(array - value)).argmin()
return idx
def find_last_pos(array, value):
idx = (np.abs(array - value))[::-1].argmin()
return array.shape[0] - idx
def createWeightsMask(epsilon, noRows, noCols):
# generate an Erdos Renyi sparse weights mask
mask_weights = np.random.rand(noRows, noCols)
prob = 1 - (epsilon * (noRows + noCols)) / \
(noRows * noCols) # normal tp have 8x connections
mask_weights[mask_weights < prob] = 0
mask_weights[mask_weights >= prob] = 1
noParameters = np.sum(mask_weights)
print("Create Sparse Matrix: No parameters, NoRows, NoCols ",
noParameters, noRows, noCols)
return [noParameters, mask_weights]
def img2mse(x, y): return tf.reduce_mean(tf.square(x - y))
def mse2psnr(x): return -10.*tf.log(x)/tf.log(10.)
def to8b(x): return (255*np.clip(x, 0, 1)).astype(np.uint8)
# Positional encoding
class Embedder:
def __init__(self, **kwargs):
self.kwargs = kwargs
self.create_embedding_fn()
def create_embedding_fn(self):
embed_fns = []
d = self.kwargs['input_dims']
out_dim = 0
if self.kwargs['include_input']:
embed_fns.append(lambda x: x)
out_dim += d
max_freq = self.kwargs['max_freq_log2']
N_freqs = self.kwargs['num_freqs']
if self.kwargs['log_sampling']:
freq_bands = 2.**tf.linspace(0., max_freq, N_freqs)
else:
freq_bands = tf.linspace(2.**0., 2.**max_freq, N_freqs)
for freq in freq_bands:
for p_fn in self.kwargs['periodic_fns']:
embed_fns.append(lambda x, p_fn=p_fn,
freq=freq: p_fn(x * freq))
out_dim += d
self.embed_fns = embed_fns
self.out_dim = out_dim
def embed(self, inputs):
return tf.concat([fn(inputs) for fn in self.embed_fns], -1)
def get_embedder(multires, i=0):
if i == -1:
return tf.identity, 3
embed_kwargs = {
'include_input': True,
'input_dims': 3,
'max_freq_log2': multires-1,
'num_freqs': multires,
'log_sampling': True,
'periodic_fns': [tf.math.sin, tf.math.cos],
}
embedder_obj = Embedder(**embed_kwargs)
def embed(x, eo=embedder_obj): return eo.embed(x)
return embed, embedder_obj.out_dim
# Model architecture
def init_nerf_model(D=8, W=256, input_ch=3, input_ch_views=3, output_ch=4, skips=[4], use_viewdirs=False):
# TODO [1]
# add MaskWeights(Constraint) and all its
# dependencies to dense(W, act=relu)
relu = tf.keras.layers.ReLU()
def dense(W, name, mask=None, act=relu):
return Dense(W, name=name, activation=act, kernel_constraint=mask)
print('MODEL', input_ch, input_ch_views, type(
input_ch), type(input_ch_views), use_viewdirs)
input_ch = int(input_ch)
input_ch_views = int(input_ch_views)
inputs = tf.keras.Input(shape=(input_ch + input_ch_views))
inputs_pts, inputs_views = tf.split(inputs, [input_ch, input_ch_views], -1)
inputs_pts.set_shape([None, input_ch])
inputs_views.set_shape([None, input_ch_views])
#print(inputs.shape, inputs_pts.shape, inputs_views.shape)
outputs = inputs_pts
noP_list = [] # weight mask
wm_list = [] # weight mask
w_list = [] # Sparse layer weight list
wsRelu_list = [] # weight relu list
for i in range(D):
layer_name = "sparse_" + str(i)
relu_name = "srelu" + str(i)
print("Creating layer ", i, "with ", outputs.shape[1], "inputs")
layer_activation = tf.keras.layers.ReLU(name=relu_name)
layer_regularization = Dropout(0.3)
if (i == 0):
# first dense layer has no mask
outputs = dense(W, layer_name,
mask=None)(outputs)
outputs = layer_activation(outputs)
outputs = layer_regularization(outputs)
else:
# create mask for current layer connected with previous layer
noP, mask_weights = createWeightsMask(
EPSILON, int(outputs.shape[1]), W)
noP_list.append(noP)
wm_list.append(mask_weights)
w_list.append(None)
wsRelu_list.append(None)
outputs = dense(W, layer_name, mask=MaskWeights(
mask_weights))(outputs)
outputs = layer_activation(outputs)
outputs = layer_regularization(outputs)
if i in skips:
outputs = tf.concat([inputs_pts, outputs], -1)
if use_viewdirs:
alpha_out = dense(1, "alpha_out", act=None)(outputs)
bottleneck = dense(256, "bottleneck", act=None)(outputs)
inputs_viewdirs = tf.concat(
[bottleneck, inputs_views], -1) # concat viewdirs
outputs = inputs_viewdirs
# The supplement to the paper states there are 4 hiddxier, so we will leave it as 1.
for i in range(1):
outputs = dense(W//2, "input_views")(outputs)
outputs = dense(3, "rgb", act=None)(outputs)
outputs = tf.concat([outputs, alpha_out], -1)
else:
outputs = dense(output_ch, "dense_" + str(D), act=None)(outputs)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
print(model.layers)
return (model, noP_list, wm_list, w_list, wsRelu_list)
# Ray helpers
def get_rays(H, W, focal, c2w):
"""Get ray origins, directions from a pinhole camera."""
i, j = tf.meshgrid(tf.range(W, dtype=tf.float32),
tf.range(H, dtype=tf.float32), indexing='xy')
dirs = tf.stack([(i-W*.5)/focal, -(j-H*.5)/focal, -tf.ones_like(i)], -1)
rays_d = tf.reduce_sum(dirs[..., np.newaxis, :] * c2w[:3, :3], -1)
rays_o = tf.broadcast_to(c2w[:3, -1], tf.shape(rays_d))
return rays_o, rays_d
def get_rays_np(H, W, focal, c2w):
"""Get ray origins, directions from a pinhole camera."""
i, j = np.meshgrid(np.arange(W, dtype=np.float32),
np.arange(H, dtype=np.float32), indexing='xy')
dirs = np.stack([(i-W*.5)/focal, -(j-H*.5)/focal, -np.ones_like(i)], -1)
rays_d = np.sum(dirs[..., np.newaxis, :] * c2w[:3, :3], -1)
rays_o = np.broadcast_to(c2w[:3, -1], np.shape(rays_d))
return rays_o, rays_d
def ndc_rays(H, W, focal, near, rays_o, rays_d):
"""Normalized device coordinate rays.
Space such that the canvas is a cube with sides [-1, 1] in each axis.
Args:
H: int. Height in pixels.
W: int. Width in pixels.
focal: float. Focal length of pinhole camera.
near: float or array of shape[batch_size]. Near depth bound for the scene.
rays_o: array of shape [batch_size, 3]. Camera origin.
rays_d: array of shape [batch_size, 3]. Ray direction.
Returns:
rays_o: array of shape [batch_size, 3]. Camera origin in NDC.
rays_d: array of shape [batch_size, 3]. Ray direction in NDC.
"""
# Shift ray origins to near plane
t = -(near + rays_o[..., 2]) / rays_d[..., 2]
rays_o = rays_o + t[..., None] * rays_d
# Projection
o0 = -1./(W/(2.*focal)) * rays_o[..., 0] / rays_o[..., 2]
o1 = -1./(H/(2.*focal)) * rays_o[..., 1] / rays_o[..., 2]
o2 = 1. + 2. * near / rays_o[..., 2]
d0 = -1./(W/(2.*focal)) * \
(rays_d[..., 0]/rays_d[..., 2] - rays_o[..., 0]/rays_o[..., 2])
d1 = -1./(H/(2.*focal)) * \
(rays_d[..., 1]/rays_d[..., 2] - rays_o[..., 1]/rays_o[..., 2])
d2 = -2. * near / rays_o[..., 2]
rays_o = tf.stack([o0, o1, o2], -1)
rays_d = tf.stack([d0, d1, d2], -1)
return rays_o, rays_d
# Hierarchical sampling helper
def sample_pdf(bins, weights, N_samples, det=False):
# Get pdf
weights += 1e-5 # prevent nans
pdf = weights / tf.reduce_sum(weights, -1, keepdims=True)
cdf = tf.cumsum(pdf, -1)
cdf = tf.concat([tf.zeros_like(cdf[..., :1]), cdf], -1)
# Take uniform samples
if det:
u = tf.linspace(0., 1., N_samples)
u = tf.broadcast_to(u, list(cdf.shape[:-1]) + [N_samples])
else:
u = tf.random.uniform(list(cdf.shape[:-1]) + [N_samples])
# Invert CDF
inds = tf.searchsorted(cdf, u, side='right')
below = tf.maximum(0, inds-1)
above = tf.minimum(cdf.shape[-1]-1, inds)
inds_g = tf.stack([below, above], -1)
cdf_g = tf.gather(cdf, inds_g, axis=-1, batch_dims=len(inds_g.shape)-2)
bins_g = tf.gather(bins, inds_g, axis=-1, batch_dims=len(inds_g.shape)-2)
denom = (cdf_g[..., 1]-cdf_g[..., 0])
denom = tf.where(denom < 1e-5, tf.ones_like(denom), denom)
t = (u-cdf_g[..., 0])/denom
samples = bins_g[..., 0] + t * (bins_g[..., 1]-bins_g[..., 0])
return samples