-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprimary_care_workforce_pipeline.py
1146 lines (936 loc) · 59.8 KB
/
primary_care_workforce_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# %% [markdown]
# # Dataset Generation #
#
# ## Obtaining base data from APCD ##
# ### Data from APCD must be obtained by logging following these steps:
#
# <ul>
# <li>Log into Stronghold (Brown University Secure Computing Environment) from APCD data can be accessed</li>
# <li>Run dbeaver from command line to access the DBeaver SQL studio UI</li>
# <li>Run the code in /apcd_sql_files/APCD_Data_Extract.sql and save the result in a file called apcd_data_extract.csv in the input_files folder </li>
# </ul>
#
# ### Python Libraries / Constants Necessary For Subsequent Logic ###
#
# %%
from pc_utilities import *
from pc_constants import *
# %% [markdown]
# ### Creating a single dataframe from APCD Data
# %%
import pandas as pd
apcd_file_name = 'apcd_data_extract.csv'
apcd_provider_data = import_csv_gracefully(INPUT_FILES_DIRECTORY, apcd_file_name)
print("Importing data from APCD yielded:", len(apcd_provider_data[APCD_NPI_COL_NAME].unique()), "unique NPIs.")
apcd_provider_data = apcd_provider_data[~apcd_provider_data[APCD_NPI_COL_NAME].isin(list(KNOWN_ORGANIZATIONAL_NPIS.keys()))]
unique_APCD_npis = apcd_provider_data[APCD_NPI_COL_NAME].unique()
print("Post dropping known organizational NPIs:", len(unique_APCD_npis), "unique NPIs.")
# %% [markdown]
# #### Generating RIDOH Files
#
# ##### Sanity Check: Reconciling NPPES with RIDOH License Database
#
# As a sanity check to ensure providers aren't missed, the NPPES database should be reconciled with the RIDOH License Database.
#
# ##### Instructions for Downloading Relevant Files:
#
# 1. Visit [Rhode Island Department of Health - Licensee Lists](https://health.ri.gov/lists/licensees/).
# 2. Download the appropriate files by **Profession or Facility**, selecting:
# - "Physician"
# - "Physician Assistant"
# - "Nursing"
# - "Midwifery"
# 3. For each file, place it in the input_files folder!
# %%
# Update the below!
ridoh_physician_licensee_extract_file_name = 'Physician-licensee-extract-2024-10-07.csv'
ridoh_physician_assistant_licensee_extract_file_name = 'Physician-Assistant-licensee-extract-2024-10-07.csv'
ridoh_nursing_licensee_extract_file_name = 'Nursing-licensee-extract-2024-10-07.csv'
ridoh_midwife_licensee_extract_file_name = 'Midwifery-licensee-extract-2024-10-07.csv'
# Nothing to update below!
RIDOH_FIRST_NAME_COL_NAME = add_source_db_prefix('First', RIDOH_PREFIX)
RIDOH_LAST_NAME_COL_NAME = add_source_db_prefix('Last', RIDOH_PREFIX)
RIDOH_LICENSE_NO_COL_NAME = add_source_db_prefix('License No', RIDOH_PREFIX)
RIDOH_CREDENTIAL_COLUMN_NAME = add_source_db_prefix('Credential', RIDOH_PREFIX)
SPECIALTY_COLUMN_NAME = add_source_db_prefix('Specialty', RIDOH_PREFIX)
RIDOH_NAME_COL_NAME = add_source_db_prefix('Name', RIDOH_PREFIX)
RIDOH_MIDDLE_COL_NAME = add_source_db_prefix('Middle', RIDOH_PREFIX)
RIDOH_LIC_TYPE_COL_NAME = add_source_db_prefix('License Type', RIDOH_PREFIX)
RIDOH_STATUS_COL_NAME = add_source_db_prefix('Status', RIDOH_PREFIX)
RIDOH_ISSUE_DATE_COL_NAME = add_source_db_prefix('Issue Date', RIDOH_PREFIX)
RIDOH_EXP_DATE_COL_NAME = add_source_db_prefix('Expiration Date', RIDOH_PREFIX)
RIDOH_ADDRESS_ONE_COL_NAME = add_source_db_prefix('Address Line 1', RIDOH_PREFIX)
RIDOH_ADDRESS_TWO_COL_NAME = add_source_db_prefix('Address Line 2', RIDOH_PREFIX)
RIDOH_ADDRESS_THREE_COL_NAME = add_source_db_prefix('Address Line 3', RIDOH_PREFIX)
RIDOH_CITY_COL_NAME = add_source_db_prefix('City', RIDOH_PREFIX)
RIDOH_STATE_COL_NAME = add_source_db_prefix('State', RIDOH_PREFIX)
RIDOH_ZIP_COL_NAME = add_source_db_prefix('Zip', RIDOH_PREFIX)
RIDOH_EMAIL_COL_NAME = add_source_db_prefix('Email', RIDOH_PREFIX)
RIDOH_PHONE_COL_NAME = add_source_db_prefix('Phone', RIDOH_PREFIX)
RIDOH_FAX_COL_NAME = add_source_db_prefix('Fax', RIDOH_PREFIX)
RIDOH_PROF_COL_NAME = add_source_db_prefix('Profession', RIDOH_PREFIX)
ridoh_physicians = import_csv_gracefully(INPUT_FILES_DIRECTORY, ridoh_physician_licensee_extract_file_name)
ridoh_physicians[RIDOH_CREDENTIAL_COLUMN_NAME] = ROLE_MD_DO
ridoh_physicians_assistant = import_csv_gracefully(INPUT_FILES_DIRECTORY,ridoh_physician_assistant_licensee_extract_file_name)
ridoh_physicians_assistant[RIDOH_CREDENTIAL_COLUMN_NAME] = ROLE_PA
ridoh_midwifery = import_csv_gracefully(INPUT_FILES_DIRECTORY, ridoh_midwife_licensee_extract_file_name)
ridoh_midwifery[RIDOH_CREDENTIAL_COLUMN_NAME] = ROLE_CERT_NURSE_MIDWIFE
# Includes both nurses and NPs so won't set credential for now (may use license type later for this analysis)
ridoh_nursing = import_csv_gracefully(INPUT_FILES_DIRECTORY, ridoh_nursing_licensee_extract_file_name)
ridoh_clinicians = pd.concat([ridoh_physicians, ridoh_physicians_assistant, ridoh_nursing, ridoh_midwifery], ignore_index=True)
excluded_column = ridoh_clinicians[[RIDOH_CREDENTIAL_COLUMN_NAME]]
remaining_columns = ridoh_clinicians.drop(columns=[RIDOH_CREDENTIAL_COLUMN_NAME]).add_prefix(RIDOH_PREFIX)
ridoh_clinicians = pd.concat([excluded_column, remaining_columns], axis=1)
ridoh_names_of_interest = list(ridoh_clinicians[[RIDOH_FIRST_NAME_COL_NAME, RIDOH_LAST_NAME_COL_NAME]].itertuples(index=False, name=None))
ridoh_licenses = ridoh_clinicians[RIDOH_LICENSE_NO_COL_NAME]
ridoh_first_names = [pair[0] for pair in ridoh_names_of_interest]
ridoh_last_names = [pair[1] for pair in ridoh_names_of_interest]
# %% [markdown]
# ### Generating NPPES Files
#
# #### Accessing the NPPES Database
#
# - The NPPES database can be found on the CMS [webpage](https://www.cms.gov/medicare/regulations-guidance/administrative-simplification/data-dissemination).
# - The actual file you need is the **Data Dissemination** file, which can be downloaded [here](https://download.cms.gov/nppes/NPI_Files.html).
# - Look for the relevant CSV file that starts with `npidata_pfile` (e.g., `npidata_pfile_20050523-20240107`) and place it in the input_files folder!
#
# ### Filtering NPPES
#
# NPPES was the source of truth on provider metadata. We went through the entire database and then:
# - Only included those NPIs that we had seen in our APCD queries - NPIs that didn't show up in APCD are presumed to not have billed RI payors and therefore not be under consideration
# - For those NPIs that were seen in the APCD queries, we still need to confirm that the providers are Rhode Island based. We did this by checking against three sources:
# - Did the provider have an address associated with RI in terms of personal or business address?
# - Did the provider have a license number that matched the RIDOH license database?
# - Did the provider have a name that matched the RIDOH license database?
#
# Of note, the public-facing RIDOH database did not include NPI numbers so this version of the logic checked against name and license number only. Future versions should consider obtaining the NPI number.
#
# Current runtime for this step is approximately 10 minutes.
# %%
# Update the below!
nppes_provider_data_file = 'npidata_pfile_20050523-20240107.csv'
output_ri_nppes_clinicians_file_suffix = '_ri_clinicians.csv'
# This flag indicates whether the NPPES data set should explicitly exclude any NPI associated with entity type=2 or organization
# Default is to not exclude to be conservative!
exclude_organizations = False
# Nothing to update below!
# chunk_size can be modified depending on the memory/performance of the machine on which the code is run!
NPPES_PREFIX = 'NPPES_'
# Looking for providers in NPPES with a RI connection based on any noted state being RI
address_columns_to_check = [
add_source_db_prefix('Provider Business Mailing Address State Name', NPPES_PREFIX),
add_source_db_prefix('Provider Business Practice Location Address State Name', NPPES_PREFIX)
]
license_columns = [f'{NPPES_PREFIX}Provider License Number State Code_{i}' for i in range(1, 16)]
address_columns_to_check.extend(license_columns)
identifier_columns = [f'{NPPES_PREFIX}Other Provider Identifier State_{i}' for i in range(1, 51)]
address_columns_to_check.extend(identifier_columns)
provider_license_number_columns = [f'{NPPES_PREFIX}Provider License Number_{i}' for i in range(1, 16)]
taxonomy_columns_to_check = [f'{NPPES_PREFIX}Healthcare Provider Taxonomy Code_{i}' for i in range(1, 16)]
NPPES_FIRST_NAME_COL_NAME = add_source_db_prefix('Provider First Name', NPPES_PREFIX)
NPPES_MIDDLE_NAME_COL_NAME = add_source_db_prefix('Provider Middle Name', NPPES_PREFIX)
NPPES_LAST_NAME_COL_NAME = add_source_db_prefix('Provider Last Name (Legal Name)', NPPES_PREFIX)
NPPES_ENTITY_TYPE_CODE = add_source_db_prefix('Entity Type Code', NPPES_PREFIX)
NPPES_NPI_COL_NAME = add_source_db_prefix('NPI', NPPES_PREFIX)
NPPES_ENTITY_TYPE_ORG_CODE = 2
NPPES_IN_RI_COL_NAME = add_source_db_prefix('Is In RI?', NPPES_PREFIX + 'CALC_')
NPPES_MATCH_RIDOH_NAME_COL_NAME = add_source_db_prefix('Matched RIDOH On Name', NPPES_PREFIX + 'CALC_')
NPPES_MATCH_RIDOH_LIC_COL_NAME = add_source_db_prefix('Matched RIDOH On License', NPPES_PREFIX + 'CALC_')
chunk_size = 200000
base_path = '.'
nppes_file_name = os.path.join(INPUT_FILES_DIRECTORY, nppes_provider_data_file)
output_ri_providers_file_name = current_date() + output_ri_nppes_clinicians_file_suffix
output_ri_providers_file_path = os.path.join(base_path, output_ri_providers_file_name)
# %%
nppes_total_rows = sum(1 for _ in open(nppes_file_name))
num_chunks = nppes_total_rows // chunk_size + (nppes_total_rows % chunk_size > 0)
print(f"The file will be read in {num_chunks} chunks. The target number of NPI numbers to find is: ", len(unique_APCD_npis))
nppes_aggregated = pd.DataFrame()
for chunk_index, current_npi_batch in enumerate(import_csv_gracefully(INPUT_FILES_DIRECTORY, nppes_provider_data_file, chunk_size, False)):
current_npi_batch = current_npi_batch.add_prefix(NPPES_PREFIX)
# Filter on only those NPI numbers that were returned from the APCD query - all other NPI numbers will be disregarded!
current_npi_batch = current_npi_batch[current_npi_batch[NPPES_NPI_COL_NAME].isin(unique_APCD_npis)]
print("Current Time:", current_date_time(), " Chunk number: ", chunk_index + 1, " Filtered Chunk length:", len(current_npi_batch))
if exclude_organizations:
current_npi_batch = current_npi_batch[current_npi_batch[NPPES_ENTITY_TYPE_CODE] != NPPES_ENTITY_TYPE_ORG_CODE]
# We nevertheless do additional filtering to actually make sure that the providers we got back from NPPES are actually
# Rhode Island Providers! (hence filtering on state, RIDOH name, and RIDOH license number - looking for proof of residency!)
in_ri = current_npi_batch[current_npi_batch[address_columns_to_check].apply(lambda x: (x == RHODE_ISLAND_STATE_CODE).any(), axis=1)].copy()
in_ri[NPPES_IN_RI_COL_NAME] = True
in_ri.dropna(how='all', axis=1, inplace=True)
nppes_aggregated = pd.concat([nppes_aggregated, in_ri], ignore_index=True)
not_in_ri = current_npi_batch[~current_npi_batch[address_columns_to_check].apply(lambda x: (x == RHODE_ISLAND_STATE_CODE).any(), axis=1)].copy()
not_in_ri[NPPES_IN_RI_COL_NAME] = False
print("RI analysis complete. There were the following number of providers not in RI:" , len(not_in_ri), " ", current_date_time())
if (len(not_in_ri) > 0):
final_mask_names = (
not_in_ri[NPPES_FIRST_NAME_COL_NAME].isin(ridoh_first_names) &
not_in_ri[NPPES_LAST_NAME_COL_NAME].isin(ridoh_last_names)
)
filtered_name_rows = not_in_ri.loc[final_mask_names].copy()
filtered_name_rows[NPPES_MATCH_RIDOH_NAME_COL_NAME] = True
print("Name matching analysis complete.", len(filtered_name_rows[filtered_name_rows[NPPES_MATCH_RIDOH_NAME_COL_NAME] == True]), " providers matched on name. ", current_date_time())
final_mask_licenses = pd.DataFrame({col: not_in_ri[col].isin(ridoh_licenses) for col in provider_license_number_columns}).any(axis=1)
filtered_license_rows = not_in_ri.loc[final_mask_licenses].copy()
filtered_license_rows[NPPES_MATCH_RIDOH_LIC_COL_NAME] = True
print("License matching analysis complete. ", len(filtered_license_rows[filtered_license_rows[NPPES_MATCH_RIDOH_LIC_COL_NAME] == True]), " providers matched on license, ", current_date_time())
filtered_rows = pd.concat([filtered_name_rows,filtered_license_rows])
filtered_rows.dropna(how='all', axis=1, inplace=True)
nppes_aggregated = pd.concat([nppes_aggregated, filtered_rows], ignore_index=True)
print("****** Total providers are now: ", len(nppes_aggregated))
# Improved memory usage on local machine but may be unnecessary
for var in ['current_npi_batch', 'in_ri', 'not_in_ri', 'filtered_name_rows', 'filtered_license_rows', 'filtered_rows', 'final_mask_names', 'final_mask_licenses']:
if var in locals():
del locals()[var]
nppes_aggregated.to_csv(output_ri_providers_file_path, index=False)
# %% [markdown]
# ### Merge APCD to NPPES
# - This is where the logic of actually creating one single large dataset takes place
# - Of note, we consider all NPIs who EITHER billed for our core prevention codes OR who billed only for vaccination but did not have an internal medicine subspecialty of exclusion
# - We also save down those APCD NPIs that were not found in NPPES for further evaluation and analysis
# %%
nppes_data = import_csv_gracefully('.', output_ri_providers_file_name)
merged_df = pd.merge(apcd_provider_data, nppes_data, left_on=APCD_NPI_COL_NAME, right_on=NPPES_NPI_COL_NAME)
print("After merging with NPPEs, only", len(merged_df) , "NPIs remain.")
npis_not_in_nppes = apcd_provider_data[~apcd_provider_data[APCD_NPI_COL_NAME].isin(nppes_data[NPPES_NPI_COL_NAME])]
print("This means that", len(npis_not_in_nppes), "NPIs from APCD are not found in NPPES. (likely because they are not RI providers)")
print("Of these,", len(npis_not_in_nppes[npis_not_in_nppes[APCD_TOTAL_CLAIMS_ALL_COL_NAME] <= 100]), "billed for 100 or fewer claims of ANY kind.")
npis_not_in_nppes.to_csv("npis_not_in_nppes_" + current_date() + ".csv")
providers_with_core_prevention = merged_df[merged_df[APCD_PC_CODES_PRESENT_COL_NAME] == True]
print("The", len(merged_df),"NPIs included", len(providers_with_core_prevention), "providers who did bill for one of our core prevention codes at least once.")
providers_without_core_prevention = merged_df[merged_df[APCD_PC_CODES_PRESENT_COL_NAME] == False]
print("And it included", len(providers_without_core_prevention), "providers who did NOT bill for one of our core prevention codes at least once.")
df_nppes_all_taxonomies = import_csv_gracefully(INPUT_FILES_DIRECTORY, 'nppes_all_taxonomies.csv')
internal_medicine_subspecialties_to_exclude = df_nppes_all_taxonomies[df_nppes_all_taxonomies['Internal_Medicine_Subspecialty_To_Exclude'] == 'Yes'][NPPES_CODE].tolist()
valid_columns = [col for col in taxonomy_columns_to_check if col in providers_without_core_prevention.columns]
if valid_columns:
mask = providers_without_core_prevention[valid_columns].isin(internal_medicine_subspecialties_to_exclude).any(axis=1)
else:
mask = pd.Series([False] * len(providers_without_core_prevention))
providers_without_core_prevention_specialty = providers_without_core_prevention[mask]
print("Of the providers who billed only for immunizations,",len(providers_without_core_prevention_specialty), "providers had a specialty of exclusion.")
providers_without_core_prevention_no_specialty = providers_without_core_prevention[~mask]
print("Of the providers who billed only for immunizations,",len(providers_without_core_prevention_no_specialty), "providers did not have a specialty of exclusion.")
final_provider_list = pd.concat([providers_with_core_prevention, providers_without_core_prevention_no_specialty], ignore_index=True)
print("In total then, there were: ", len(final_provider_list), "primary care NPIs that could be matched between NPPES, RIDOH and APCD.")
# %% [markdown]
# # Merged Dataset Cleaning
#
# ### Taxonomy Mark-up
# - This section of code deals with using the taxonomy codes included in NPPES to identify what types of clinicians the merged file includes
# %%
physician_taxonomies = df_nppes_all_taxonomies[df_nppes_all_taxonomies['Grouping'] == 'Allopathic & Osteopathic Physicians']
# We are excluding those taxonomies that we do not expect are primary care taxonomies
df_nppes_pc_taxonomies = df_nppes_all_taxonomies[df_nppes_all_taxonomies['Exclude?'] != 'Yes']
# Create dictionary mapping of physician specialty to taxonomy codes
taxoncmy_code_specialties = {}
# Though EM should not generally be primary care, due to some data quality issues, we include it here
taxoncmy_code_specialties[SPECIALTY_EM] = physician_taxonomies[(physician_taxonomies[NPPES_CLASSIFICATION] == SPECIALTY_EM)][NPPES_CODE].tolist()
# anyone with one of these specialties must be a physician by defintion
primary_care_adjacent_specialties = [SPECIALTY_INTEG_MEDICINE, SPECIALTY_PREVENT_MEDICINE, SPECIALTY_INTERNAL_MEDICINE, SPECIALTY_FAMILY_MEDICINE, SPECIALTY_GEN_PRACTICE, SPECIALTY_OBGYN, SPECIALTY_PEDS]
for specialty in primary_care_adjacent_specialties:
taxoncmy_code_specialties[specialty] = df_nppes_pc_taxonomies[(df_nppes_pc_taxonomies[NPPES_CLASSIFICATION] == specialty)][NPPES_CODE].tolist()
def get_codes(dataframe, classification_conditions=None):
"""Get taxonomy codes based on classification conditions.
Args:
dataframe: DataFrame containing taxonomy codes
classification_conditions: Single classification string or list of tuples with (classification, operator)
where operator is '==' or '|' for OR condition
"""
if isinstance(classification_conditions, str):
return dataframe[dataframe[NPPES_CLASSIFICATION] == classification_conditions][NPPES_CODE].tolist()
elif classification_conditions:
mask = None
for classification in classification_conditions:
condition = (dataframe[NPPES_CLASSIFICATION] == classification)
if mask is None:
mask = condition
else:
mask |= condition # Bitwise OR for OR condition
return dataframe[mask][NPPES_CODE].tolist()
return dataframe[NPPES_CODE].tolist()
valid_columns = [col for col in taxonomy_columns_to_check if col in final_provider_list.columns]
# Of note, the logic below will take the last role as the accurate one - this is why we set up the boolean
# is_role column to track those clinicians who meet the criteria for more than one role (this logic is also replicated for specialty)
taxonomy_code_roles = {
ROLE_MISC_OTHER : get_codes(df_nppes_all_taxonomies,['Legal Medicine', 'Specialist']),
ROLE_PODIATRY : get_codes(df_nppes_all_taxonomies, ROLE_PODIATRY),
ROLE_OPTOMETRY : get_codes(df_nppes_all_taxonomies, ROLE_OPTOMETRY),
ROLE_CASE_MGMT : get_codes(df_nppes_all_taxonomies, ROLE_CASE_MGMT),
ROLE_PSYCHOLOGIST : get_codes(df_nppes_all_taxonomies, ROLE_PSYCHOLOGIST),
ROLE_ORGANIZATION : get_codes(df_nppes_pc_taxonomies, ['Clinic/Center','General Acute Care Hospital', 'Nursing Facility/Intermediate Care Facility', 'Hospice Care, Community Based']),
ROLE_CLIN_NURSE_SPECIALIST : get_codes(df_nppes_pc_taxonomies, ROLE_CLIN_NURSE_SPECIALIST),
ROLE_CERT_NURSE_MIDWIFE : get_codes(df_nppes_pc_taxonomies, ['Advanced Practice Midwife', 'Midwife']),
ROLE_NURSE: get_codes(df_nppes_pc_taxonomies, 'Registered Nurse'),
ROLE_STUDENT : get_codes(df_nppes_pc_taxonomies, 'Student in an Organized Health Care Education/Training Program'),
ROLE_NP: get_codes(df_nppes_pc_taxonomies, ROLE_NP),
ROLE_PA: get_codes(df_nppes_pc_taxonomies, ROLE_PA),
ROLE_MD_DO: get_codes(physician_taxonomies),
}
def update_roles_specialties(final_provider_list, taxonomy_dictionary, valid_columns, col_to_update):
for role_or_specialty, codes_to_check in taxonomy_dictionary.items():
if valid_columns:
mask = final_provider_list[valid_columns].apply(lambda row: row.isin(codes_to_check).any(), axis=1)
final_provider_list.loc[mask, col_to_update] = role_or_specialty
taxonomy_code_tracking_col_name = ''
if col_to_update == SPECIALTY_COLUMN_NAME:
taxonomy_code_tracking_col_name = 'Included_taxonomy_values_specialty'
elif col_to_update == RIDOH_CREDENTIAL_COLUMN_NAME:
taxonomy_code_tracking_col_name = 'Included_taxonomy_values_role'
final_provider_list.loc[mask, taxonomy_code_tracking_col_name] = final_provider_list.loc[mask, valid_columns].apply(
lambda row: [val for val in row if val in codes_to_check], axis=1
)
column_name = f'is_{role_or_specialty}'
final_provider_list[column_name] = False
final_provider_list.loc[mask, column_name] = True
update_roles_specialties(final_provider_list, taxonomy_code_roles, valid_columns, RIDOH_CREDENTIAL_COLUMN_NAME)
update_roles_specialties(final_provider_list, taxoncmy_code_specialties, valid_columns, SPECIALTY_COLUMN_NAME)
# Original list of column names
full_specialty_list = primary_care_adjacent_specialties + [SPECIALTY_EM]
cols = [f'is_{col}' for col in full_specialty_list]
# Create the 'Count Specialties' column by summing up True values in the modified columns
final_provider_list['Count Specialties'] = final_provider_list[cols].sum(axis=1)
final_provider_list['Derived Specialty'] = 'Unknown'
# Function to determine the derived specialty based on Count Specialties and specific rules
def get_derived_specialty(row):
if row['Count Specialties'] == 1:
# Find the column where the value is True and remove the 'is_' prefix
true_column = next(col for col in cols if row[col] == True)
return true_column.replace('is_', '')
elif row['Count Specialties'] == 2:
# Get the list of columns where value is True
true_columns = [col for col in cols if row[col] == True]
if set(true_columns) == {'is_Internal Medicine', 'is_Pediatrics'}:
return 'Med-Peds'
elif set(true_columns) == {'is_Internal Medicine', 'is_Family Medicine'}:
return 'IM-FM'
elif set(true_columns) == {'is_Emergency Medicine', 'is_Internal Medicine'}:
return 'EM-IM'
elif set(true_columns) == {'is_Family Medicine', 'is_Obstetrics & Gynecology'}:
return 'FM-OBGYN'
elif set(true_columns) == {'is_Family Medicine', 'is_Pediatrics'}:
return 'FM-Peds'
elif set(true_columns) == {'is_Family Medicine', 'is_Emergency Medicine'}:
return 'FM-EM'
else:
return 'Multiple specialties'
elif row['Count Specialties'] > 2:
return 'Multiple specialties'
else:
return 'Unknown'
final_provider_list['Derived Specialty'] = final_provider_list.apply(get_derived_specialty, axis=1)
final_provider_list.to_csv('final_provider_list.csv')
# %% [markdown]
# ### RIDOH License Number Triangulation
# The goal of this code is to try to triangulate the exact license number and specialty type of every clinician found above.
# The license number is particularly valuable as it can be directly looked up for information on year of graduation as well as school
# %%
import re
def clean_license_minimal(license_no):
if pd.isna(license_no) or license_no.strip() == '':
return ''
pattern = rf'^({MD_PREFIX}|{DO_PREFIX}|{LP_PREFIX})'
return re.sub(pattern, '', license_no).strip()
def clean_license(license_no):
if pd.isna(license_no) or license_no.strip() == '':
return ''
pattern = rf'^({MD_PREFIX}0?|{DO_PREFIX}0?|{LP_PREFIX}0?)'
return re.sub(pattern, '', license_no).strip()
ridoh_clinicians[SPECIALTY_COLUMN_NAME] = ridoh_clinicians[SPECIALTY_COLUMN_NAME].astype(str).replace(NAN_STRING, '')
grouped_ridoh = ridoh_clinicians.groupby(
[RIDOH_CREDENTIAL_COLUMN_NAME, RIDOH_NAME_COL_NAME, RIDOH_FIRST_NAME_COL_NAME,
RIDOH_MIDDLE_COL_NAME, RIDOH_LAST_NAME_COL_NAME, RIDOH_LICENSE_NO_COL_NAME,
RIDOH_LIC_TYPE_COL_NAME, RIDOH_STATUS_COL_NAME, RIDOH_ISSUE_DATE_COL_NAME, RIDOH_EXP_DATE_COL_NAME,
RIDOH_ADDRESS_ONE_COL_NAME, RIDOH_ADDRESS_TWO_COL_NAME, RIDOH_ADDRESS_THREE_COL_NAME,
RIDOH_CITY_COL_NAME, RIDOH_STATE_COL_NAME, RIDOH_ZIP_COL_NAME,
RIDOH_EMAIL_COL_NAME,RIDOH_PHONE_COL_NAME, RIDOH_FAX_COL_NAME, RIDOH_PROF_COL_NAME], dropna=False
)[SPECIALTY_COLUMN_NAME].apply(','.join).reset_index()
grouped_ridoh['License Cleaned'] = grouped_ridoh[RIDOH_LICENSE_NO_COL_NAME].apply(clean_license)
grouped_ridoh['License Cleaned Minimal'] = grouped_ridoh[RIDOH_LICENSE_NO_COL_NAME].apply(clean_license_minimal)
grouped_ridoh['full_name_concatenated'] = (
grouped_ridoh[RIDOH_FIRST_NAME_COL_NAME].fillna('') + ' ' +
grouped_ridoh[RIDOH_MIDDLE_COL_NAME].fillna('') + ' ' +
grouped_ridoh[RIDOH_LAST_NAME_COL_NAME].fillna('')
).str.strip().str.strip().str.lower().str.replace(' ', '')
def clean_provider_licenses(row):
licenses = [
clean_license(row[add_source_db_prefix('Provider License Number_1', NPPES_PREFIX)]),
clean_license(row[add_source_db_prefix('Provider License Number_2', NPPES_PREFIX)]),
clean_license(row[add_source_db_prefix('Provider License Number_3', NPPES_PREFIX)]),
clean_license(row[add_source_db_prefix('Provider License Number_4', NPPES_PREFIX)]),
clean_license(row[add_source_db_prefix('Provider License Number_5', NPPES_PREFIX)])
]
return ', '.join(filter(None, licenses))
final_provider_list['License Cleaned'] = final_provider_list.apply(clean_provider_licenses, axis=1)
def confirm_license_specialty(row, ridoh_clinicians):
matching_row = ridoh_clinicians[
(ridoh_clinicians[RIDOH_FIRST_NAME_COL_NAME].str.strip().str.lower() == str(row[NPPES_FIRST_NAME_COL_NAME]).strip().lower()) &
(ridoh_clinicians[RIDOH_LAST_NAME_COL_NAME].str.strip().str.lower() == str(row[NPPES_LAST_NAME_COL_NAME]).strip().lower()) &
(ridoh_clinicians[RIDOH_CREDENTIAL_COLUMN_NAME].str.strip().str.lower() == str(row[RIDOH_CREDENTIAL_COLUMN_NAME]).strip().lower())
]
# Usually first/last name is uniquely identify - however, in some cases, we need to
if (len(matching_row)) > 1:
if pd.notna(row[NPPES_MIDDLE_NAME_COL_NAME]) and row[NPPES_MIDDLE_NAME_COL_NAME].strip() != '':
matching_row = matching_row[matching_row[RIDOH_MIDDLE_COL_NAME].str.strip().str.lower().str[0] == str(row[NPPES_MIDDLE_NAME_COL_NAME]).strip().lower()[0]]
if (len(matching_row) == 0):
row_full_name = (
str(row[NPPES_FIRST_NAME_COL_NAME] if pd.notna(row[NPPES_FIRST_NAME_COL_NAME]) else '').strip().lower() +
str(row[NPPES_MIDDLE_NAME_COL_NAME] if pd.notna(row[NPPES_MIDDLE_NAME_COL_NAME]) else '').strip().lower() +
str(row[NPPES_LAST_NAME_COL_NAME] if pd.notna(row[NPPES_LAST_NAME_COL_NAME]) else '').strip().lower()
)
matching_row = ridoh_clinicians[
(ridoh_clinicians['full_name_concatenated'].str.strip().str.lower().str.replace(' ', '') == row_full_name.replace(' ', '')) &
(ridoh_clinicians[RIDOH_CREDENTIAL_COLUMN_NAME].str.strip().str.lower() == str(row[RIDOH_CREDENTIAL_COLUMN_NAME]).strip().lower())
]
if not matching_row.empty:
for license_column in ['License Cleaned', 'License Cleaned Minimal']:
ridoh_license_cleaned = matching_row[license_column].values[0]
final_provider_license_cleaned = row['License Cleaned']
if ridoh_license_cleaned in [item.strip() for item in final_provider_license_cleaned.split(',')]:
return pd.Series({
'Confirmed License': matching_row[RIDOH_LICENSE_NO_COL_NAME].values[0],
'Confirmed RIDOH Specialty': matching_row[SPECIALTY_COLUMN_NAME].values[0]
})
return pd.Series({
'Confirmed License': UNCONFIRMED_STRING,
'Confirmed RIDOH Specialty': UNCONFIRMED_STRING
})
final_provider_list[['Confirmed License', 'Confirmed RIDOH Specialty']] = final_provider_list.apply(
confirm_license_specialty, axis=1, ridoh_clinicians=grouped_ridoh
)
final_provider_list.to_csv('final_provider_list.csv')
# %%
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.support.ui import Select
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.ui import WebDriverWait
from selenium.common.exceptions import StaleElementReferenceException
from selenium.webdriver.chrome.options import Options
from selenium.common.exceptions import TimeoutException
MAX_WAIT_TIME_IN_SECS = 3
METHOD_LIC = 'License Look-up'
METHOD_NAME = 'First and Last Name Look-up'
HLTHRI_ISSUE_DATE_COL_NAME = 'RIDOH Issue Date'
HLTHRI_EXP_DATE_COL_NAME = 'RIDOH Expiration Date'
HLTHRI_SCHOOL_NAME_COL_NAME = 'RIDOH School Name'
HLTHRI_GRAD_DATE_COL_NAME = 'RIDOH Graduation Date'
HLTHRI_SPEC_INFO_COL_NAME = 'RIDOH Specialty Info'
HLTHRI_METHD_COL_NAME = 'RIDOH Methodology'
HLTHRI_LIC_NO_COL_NAME = 'RIDOH Discovered License No'
HLTHRI_NAME_COL_NAME = 'RIDOH Discovered Name'
HLTHRI_PROF_COL_NAME = 'RIDOH Discovered Profession'
HLTHRI_LIC_TYPE_COL_NAME = 'RIDOH Discovered License Type'
HLTHRI_LIC_STATUS_COL_NAME = 'RIDOH Discovered License Status'
HLTHRI_CITY_COL_NAME = 'RIDOH Discovered City'
HLTHRI_STATE_COL_NAME = 'RIDOH Discovered State'
MAX_RETRIES_PER_CLINICIAN = 2
final_provider_list_2 = final_provider_list.copy()
final_provider_list_2[HLTHRI_ISSUE_DATE_COL_NAME] = ''
final_provider_list_2[HLTHRI_EXP_DATE_COL_NAME] = ''
final_provider_list_2[HLTHRI_SCHOOL_NAME_COL_NAME] = ''
final_provider_list_2[HLTHRI_GRAD_DATE_COL_NAME] = ''
final_provider_list_2[HLTHRI_SPEC_INFO_COL_NAME] = ''
final_provider_list_2[HLTHRI_METHD_COL_NAME] = ''
final_provider_list_2[HLTHRI_LIC_NO_COL_NAME] = ''
final_provider_list_2[HLTHRI_NAME_COL_NAME] = ''
final_provider_list_2[HLTHRI_PROF_COL_NAME] = ''
final_provider_list_2[HLTHRI_LIC_TYPE_COL_NAME] = ''
final_provider_list_2[HLTHRI_LIC_STATUS_COL_NAME] = ''
final_provider_list_2[HLTHRI_CITY_COL_NAME] = ''
final_provider_list_2[HLTHRI_STATE_COL_NAME] = ''
ridoh_online_verification_complaint_submission_site = 'https://healthri.mylicense.com/verification/Search.aspx?facility=N&SubmitComplaint=Y'
def get_chrome_driver():
chrome_options = Options()
chrome_options.add_argument("--incognito")
chrome_options.add_argument("--headless") # Enable headless mode
chrome_options.add_argument("--no-sandbox") # Bypass OS security model (Linux only)
chrome_options.add_argument("--disable-dev-shm-usage") # Overcome limited resource problems
chrome_options.add_argument("--log-level=3") # Suppress logs
driver = webdriver.Chrome(options=chrome_options)
return driver
def get_element_text(wait, element_name, primary_id, secondary_id=None, verbose=False):
try:
return wait.until(EC.presence_of_element_located((By.ID, primary_id))).text
except TimeoutException:
try:
if secondary_id is not None:
return wait.until(EC.presence_of_element_located((By.ID, secondary_id))).text
else:
return None
except TimeoutException:
if verbose:
print(f"{element_name} element not found.")
return None
def get_nppes_license_if_available(row):
license_to_search = None
if (row['Confirmed License'] != UNCONFIRMED_STRING):
license_to_search = row['Confirmed License']
else:
for i in range(1, 6):
license_number_col = f'{NPPES_PREFIX}Provider License Number_{i}'
state_code_col = f'{NPPES_PREFIX}Provider License Number State Code_{i}'
if row[state_code_col] == RHODE_ISLAND_STATE_CODE:
license_to_search = row[license_number_col]
# Thought process / hope is first license is more likely to be accurate
# Could revisit searching against all possible licenses but currently will just fall back
# to name search - it also turns out licenses CAN have dashes and be valid but CAN'T have spaces!
return license_to_search.replace(" ","")
def clean_name(name):
return name.replace("-"," ").replace(" ", "")
for index, row in final_provider_list_2.iterrows():
role = row[RIDOH_CREDENTIAL_COLUMN_NAME]
first_name = row[NPPES_FIRST_NAME_COL_NAME]
last_name = row[NPPES_LAST_NAME_COL_NAME]
entity_type = row[NPPES_ENTITY_TYPE_CODE]
if entity_type == NPPES_ENTITY_TYPE_ORG_CODE:
print(f"Index: {index} - No license look-up for organizations")
continue
# If there is no first or last name, then there is a good chance this is an organization and there is no need to search
if not first_name or not last_name or str(first_name).lower() == NAN_STRING or str(last_name).lower() == NAN_STRING:
print(f"Index: {index} - Skipping no name clinician.")
continue
skip_license_search = False
for attempt in range(MAX_RETRIES_PER_CLINICIAN):
# resetting those variables that can change per attempt
license_to_search = None
credential = None
prefix = None
try:
# Currently only attempting license look-ups for specific credentials
if (role in [ROLE_MD_DO, ROLE_PA, ROLE_CLIN_NURSE_SPECIALIST, ROLE_NURSE, ROLE_NP, ROLE_CERT_NURSE_MIDWIFE]):
driver = get_chrome_driver()
driver.get(ridoh_online_verification_complaint_submission_site)
# the skip_license_search flag was developed in the case that the result of the search based on the license number
# yields a physician whose name doesn't match our records - in this case, we want to re-try to search based on name alone
if not skip_license_search:
license_to_search = get_nppes_license_if_available(row)
# Of note, RI is not considered a valid prefix by the RIDOH website - however, there are no
# guarantees on if this belongs to an MD, DO, NP so for now, falling back on name searches
if license_to_search is not None:
invalid_license_pattern = rf'^({RHODE_ISLAND_STATE_CODE})'
invalid_match = re.match(invalid_license_pattern, license_to_search)
if invalid_match:
skip_license_search = True
raise Exception(f"License begins with {RHODE_ISLAND_STATE_CODE} identifer - will search on name instead!")
# Consider better handling for: F03170623, LP03291, MW00016
pattern = rf'^({DO_PREFIX}|{MD_PREFIX}|{CNM_PREFIX}|{PA_PREFIX}|{APRN_PREFIX}|{RN_PREFIX}|{ETL_PREFIX}|{NPP_PREFIX}|{CAPRN_PREFIX})'
match = re.match(pattern, license_to_search)
if match:
prefix = match.group(0)
if prefix == PA_PREFIX:
credential = ROLE_PA
elif prefix == MD_PREFIX or prefix == DO_PREFIX:
credential = ROLE_MD_DO
elif prefix in [APRN_PREFIX,RN_PREFIX,ETL_PREFIX,NPP_PREFIX,CAPRN_PREFIX]:
credential = 'Nursing'
elif prefix == CNM_PREFIX:
credential = 'Midwifery'
print(f"Index: {index} - searching {license_to_search}, against the license type of: {credential},{current_date_time()}")
if credential is not None:
dropdown_element = driver.find_element(By.ID, 't_web_lookup__profession_name')
select = Select(dropdown_element)
select.select_by_visible_text(credential)
search_input = driver.find_element(By.NAME, "t_web_lookup__license_no")
search_input.send_keys(license_to_search)
methodology = METHOD_LIC
else:
if role == ROLE_MD_DO:
credential = ROLE_MD_DO
elif role == ROLE_PA:
credential = ROLE_PA
elif role == ROLE_NP or role == ROLE_NURSE or role == ROLE_CLIN_NURSE_SPECIALIST:
credential = 'Nursing'
elif role == ROLE_CERT_NURSE_MIDWIFE:
credential = 'Midwifery'
else:
break
dropdown_element = driver.find_element(By.ID, 't_web_lookup__profession_name')
select = Select(dropdown_element)
select.select_by_visible_text(credential)
search_input = driver.find_element(By.NAME, "t_web_lookup__first_name")
search_input.send_keys(first_name)
search_input = driver.find_element(By.NAME, "t_web_lookup__last_name")
search_input.send_keys(last_name)
print(f"Index: {index} - searching {first_name} and {last_name}, against the license type of: {credential}, {current_date_time()}")
methodology = METHOD_NAME
search_input.send_keys(Keys.RETURN)
wait = WebDriverWait(driver, MAX_WAIT_TIME_IN_SECS)
wait.until(EC.presence_of_element_located((By.ID, 'datagrid_results')))
link_elements = driver.find_elements(By.CSS_SELECTOR, 'a[id^="datagrid_results__ctl"]')
for link in link_elements:
license_number = None
try:
link_license_number = link.find_element(By.XPATH, '../following-sibling::td[1]/span').text
# This logic is necessary as the search automatically inserts a wildcard at beginning and thus
# includes other associated licenses which capture slightly different info (e.g. lack specialty for physicians)
# here, we confirm that we got the exact license we searched on if license was in the query
if license_to_search is not None and license_to_search != link_license_number:
continue
ridoh_name = link.text
print(f'Name: {ridoh_name} and License Number: {link_license_number} found based on methodology: {methodology}')
# This logic is necessary because there are individuals who an incorrect license number listed and whose
# name on license look-up doesn't match - for these people, we want to revert to a manual name search
if (clean_name(first_name) not in clean_name(ridoh_name) or clean_name(last_name) not in clean_name(ridoh_name)):
skip_license_search = True
raise Exception("Name mismatch based on license search!")
ridoh_profession = link.find_element(By.XPATH, '../following-sibling::td[3]/span').text
ridoh_license_type = link.find_element(By.XPATH, '../following-sibling::td[4]/span').text
ridoh_license_status = link.find_element(By.XPATH, '../following-sibling::td[5]/span').text
ridoh_city = link.find_element(By.XPATH, '../following-sibling::td[6]/span').text
ridoh_state = link.find_element(By.XPATH, '../following-sibling::td[7]/span').text
final_provider_list_2.at[index, HLTHRI_NAME_COL_NAME] = ridoh_name
final_provider_list_2.at[index, HLTHRI_LIC_NO_COL_NAME] = link_license_number
final_provider_list_2.at[index, HLTHRI_PROF_COL_NAME] = ridoh_profession
final_provider_list_2.at[index, HLTHRI_LIC_TYPE_COL_NAME] = ridoh_license_type
final_provider_list_2.at[index, HLTHRI_LIC_STATUS_COL_NAME] = ridoh_license_status
final_provider_list_2.at[index, HLTHRI_CITY_COL_NAME] = ridoh_city
final_provider_list_2.at[index, HLTHRI_STATE_COL_NAME] = ridoh_state
driver.execute_script("arguments[0].removeAttribute('target');", link)
link.click()
break
except StaleElementReferenceException:
print("Stale element reference, re-fetching the links.")
issue_date = get_element_text(wait, "Issue date", "_ctl15__ctl1_issue_date", "_ctl17__ctl1_issue_date")
expiration_date = get_element_text(wait, "Expiration date", "_ctl15__ctl1_expiration_date", "_ctl17__ctl1_expiration_date")
school_name = get_element_text(wait, "School name", "_ctl25__ctl1_schl_name", "_ctl27__ctl1_schl_name")
graduated_date = get_element_text(wait, "Graduation date", "_ctl25__ctl1_date_to", "_ctl27__ctl1_date_to")
specialty_info = get_element_text(wait, "Specialty Information", "_ctl33__ctl1_authority_code")
if all(x is None for x in [issue_date, expiration_date, school_name, graduated_date, specialty_info]) and methodology == METHOD_LIC:
skip_license_search = True
raise Exception("Nothing was found based on a license search - retrying based on name")
final_provider_list_2.at[index, HLTHRI_ISSUE_DATE_COL_NAME] = issue_date
final_provider_list_2.at[index, HLTHRI_EXP_DATE_COL_NAME] = expiration_date
# Of note, school name is particularly complicated for non-physicians - it seems to capture more school info
final_provider_list_2.at[index, HLTHRI_SCHOOL_NAME_COL_NAME] = school_name
final_provider_list_2.at[index, HLTHRI_GRAD_DATE_COL_NAME] = graduated_date
# Of note, physicians can in fact have multiple specialties list - current logic doesn't handle this
final_provider_list_2.at[index, HLTHRI_SPEC_INFO_COL_NAME] = specialty_info
final_provider_list_2.at[index, HLTHRI_METHD_COL_NAME] = methodology
driver.quit()
break
except Exception as e:
print(f"Attempt {attempt + 1}/{MAX_RETRIES_PER_CLINICIAN} - Error processing row {index}: {e}")
if attempt == MAX_RETRIES_PER_CLINICIAN - 1:
print("Max retries reached. Skipping to the next row.")
driver.quit()
else:
continue
final_provider_list_2.to_csv('final_modified_dataframe.csv', index=False)
# %% [markdown]
# # Geographic Analysis and Breakdown
# %%
final_provider_list_3 = import_csv_gracefully('.', 'final_modified_dataframe.csv')
school_data = import_csv_gracefully(INPUT_FILES_DIRECTORY, 'educational_institutional_lookup.csv')
combined = pd.merge(final_provider_list_3, school_data, left_on= HLTHRI_SCHOOL_NAME_COL_NAME, right_on='Institution', how='left')
# combined.to_csv('final_modified_dataframe_with_state.csv', index=False)
import plotly.graph_objects as go
import ipywidgets as widgets
import plotly.express as px
import plotly.graph_objects as go
ALL_VALUE = 'ALL'
decade_color_mapping = {
'2000.0': '#1f77b4', # Blue
'2010.0': '#ff7f0e', # Orange
'2020.0': '#2ca02c', # Green
'1990.0': '#d62728', # Red
'1980.0': '#9467bd', # Purple
'1970.0': '#8c564b', # Brown
'1960.0': '#e377c2', # Pink
'1950.0': '#7f7f7f', # Gray
'1940.0': '#bcbd22', # Olive
'1930.0': '#17becf', # Cyan
'OTHER' : '#f0eded'
}
state_color_mapping = {
'OTHER' : '#f0eded',
'Massachusetts': '#1f77b4', # Blue
'Rhode Island': '#ff7f0e', # Orange
'New York': '#2ca02c', # Green
'Pennsylvania': '#d62728', # Red
'Maine': '#9467bd', # Purple
'Connecticut': '#8c564b', # Brown
'North Carolina': '#e377c2', # Pink
'California': '#7f7f7f', # Gray
'Missouri': '#bcbd22', # Olive
'Texas': '#17becf', # Cyan
'Ohio': '#ffbb78', # Light Orange
'District of Columbia': '#98df8a', # Light Green
'New Jersey': '#ff9896', # Light Red
'Kentucky': '#c5b0d5', # Lavender
'Colorado': '#f7b6d2', # Light Pink
'Florida': '#c49c94', # Light Brown
'Georgia': '#f4c542', # Light Olive
'Illinois': '#17b3c2', # Teal
'Maryland': '#7f7f7f', # Dark Gray
'Michigan': '#bd9d29', # Mustard Yellow
}
def get_colors(items, color_mapping):
return [color_mapping.get(item, '#000000') for item in items] # Default to black if no mapping exists
combined.fillna('Unknown', inplace=True)
combined[HLTHRI_GRAD_DATE_COL_NAME] = pd.to_datetime(combined[HLTHRI_GRAD_DATE_COL_NAME], errors='coerce')
combined['Graduation_Decade'] = (combined[HLTHRI_GRAD_DATE_COL_NAME].dt.year // 10 * 10).astype(str)
excluded_credentials = [ROLE_STUDENT, ROLE_ORGANIZATION, ROLE_MISC_OTHER, ROLE_CASE_MGMT, ROLE_PSYCHOLOGIST, ROLE_PODIATRY, ROLE_OPTOMETRY]
filtered_credentials = [cred for cred in combined[RIDOH_CREDENTIAL_COLUMN_NAME].unique() if cred not in excluded_credentials]
credential_dropdown = widgets.Dropdown(
options=filtered_credentials,
description=RIDOH_CREDENTIAL_COLUMN_NAME + ':',
value=ROLE_MD_DO
)
country_dropdown = widgets.Dropdown(
options=[ALL_VALUE] + combined['Institution_Country'].unique().tolist(), # Add 'All' option
description='Country:',
value=ALL_VALUE # Default value is 'All'
)
specialty_dropdown = widgets.Dropdown(
options=[ALL_VALUE] + combined[SPECIALTY_COLUMN_NAME].unique().tolist(), # Add 'All' option
description= SPECIALTY_COLUMN_NAME + ':',
value=ALL_VALUE # Default value is 'All'
)
# Create a dropdown for number of slices
num_slices_dropdown = widgets.Dropdown(
options=[3, 4, 5, 6, 7, 8, 9, 10], # Options for number of slices
description='Num Slices:',
value=8 # Default value
)
# Output widget to hold pie charts
output_pie_charts = widgets.Output()
def aggregate_slices(df, column, num_slices=8):
counts = df[column].value_counts()
top_counts = counts.nlargest(num_slices - 1)
other_count = counts[counts.index.isin(top_counts.index) == False].sum()
# Create a new Series to hold the final counts, including "OTHER" if applicable
aggregated_counts = top_counts.copy()
if other_count > 0:
aggregated_counts['OTHER'] = other_count
# Sort the aggregated counts by value in descending order
sorted_aggregated_counts = aggregated_counts.sort_values(ascending=False)
return sorted_aggregated_counts.index, sorted_aggregated_counts.values
# Function to update pie charts based on selected credential, country, specialty, and num_slices
def update_pie_charts(selected_credential, selected_country, selected_specialty, num_slices):
with output_pie_charts:
output_pie_charts.clear_output() # Clear the current output
# Filter dataframe based on selected credential
filtered_df = combined[combined[RIDOH_CREDENTIAL_COLUMN_NAME] == selected_credential]
# Further filter by selected country if it's not 'All'
if selected_country != ALL_VALUE:
filtered_df = filtered_df[filtered_df['Institution_Country'] == selected_country]
# Further filter by selected specialty if it's not 'All'
if selected_specialty != ALL_VALUE:
filtered_df = filtered_df[filtered_df[SPECIALTY_COLUMN_NAME] == selected_specialty]
# Create pie charts while excluding "Unknown" for each column independently
country_filtered = filtered_df[filtered_df['Institution_Country'] != "Unknown"]
state_filtered = filtered_df[filtered_df['Institution_State'] != "Unknown"]
region_filtered = filtered_df[filtered_df['Institution_Region_Census'] != "Unknown"]
division_filtered = filtered_df[filtered_df['Institution_Division_Census'] != "Unknown"]
decade_filtered = filtered_df[filtered_df['Graduation_Decade'] != "Unknown"] # Exclude "Unknown"
decade_filtered = decade_filtered[decade_filtered['Graduation_Decade'] != 'nan']
# Aggregate slices and create pie charts
country_names, country_values = aggregate_slices(country_filtered, 'Institution_Country', num_slices)
state_names, state_values = aggregate_slices(state_filtered, 'Institution_State', num_slices)
region_names, region_values = aggregate_slices(region_filtered, 'Institution_Region_Census', num_slices)
division_names, division_values = aggregate_slices(division_filtered, 'Institution_Division_Census', num_slices)
decade_names, decade_values = aggregate_slices(decade_filtered, 'Graduation_Decade', num_slices) # New decade data
# Create pie charts
fig_country = go.FigureWidget(px.pie(names=country_names, values=country_values, title='Institution Country Breakdown', width=400, height=300))
fig_state = go.FigureWidget(px.pie(
names=state_names,
values=state_values,
title='Institution State Breakdown (if USA)',
width=400,
height=300,
color_discrete_sequence=get_colors(state_names, state_color_mapping) # ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf', '#f0eded']
))
fig_region = go.FigureWidget(px.pie(names=region_names, values=region_values, title='Institution Region Breakdown (if USA)', width=400, height=300))
fig_division = go.FigureWidget(px.pie(names=division_names, values=division_values, title='Institution Division Breakdown (if USA)', width=400, height=300))
fig_decade = go.FigureWidget(px.pie(
names=decade_names,
values=decade_values,
title='Graduation Decade Breakdown',
width=400,
height=300,
color_discrete_sequence=get_colors(decade_names, decade_color_mapping)
))
# Display charts inline using HBox
display(widgets.HBox([fig_country, fig_decade]))
display(widgets.HBox([fig_state, fig_region, fig_division, ]))
# Callback function when a dropdown value changes
def on_dropdown_change(change):
update_pie_charts(credential_dropdown.value, country_dropdown.value, specialty_dropdown.value, num_slices_dropdown.value)
# Observe changes in all dropdowns
credential_dropdown.observe(on_dropdown_change, names='value')
country_dropdown.observe(on_dropdown_change, names='value')
specialty_dropdown.observe(on_dropdown_change, names='value')
num_slices_dropdown.observe(on_dropdown_change, names='value')
# Display the dropdowns and output widget
display(widgets.HBox([credential_dropdown, country_dropdown, specialty_dropdown, num_slices_dropdown]))
display(output_pie_charts)
# Initial pie charts for the default dropdown values
update_pie_charts(credential_dropdown.value, country_dropdown.value, specialty_dropdown.value, num_slices_dropdown.value)
# %% [markdown]
# ### Analysis of Clinician Productivity including bins/distributions
# %%
final_provider_list.loc[:, 'Total_Distinct_Medical_Claim_Count_PC_EQ'] = round(final_provider_list['APCD_CORE_PC_CLAIMS_COUNT'] / 900,1)
final_provider_list.loc[:, 'APCD_TOTAL_CLAIMS_ALL_EQ'] = round(final_provider_list[APCD_TOTAL_CLAIMS_ALL_COL_NAME] / 3360,1)
final_provider_list[SPECIALTY_COLUMN_NAME] = final_provider_list[SPECIALTY_COLUMN_NAME].replace('', 'Undetermined')
final_provider_list[SPECIALTY_COLUMN_NAME] = final_provider_list[SPECIALTY_COLUMN_NAME].fillna('Undetermined')
final_provider_list['Provider Gender Code'] = final_provider_list[NPPES_PREFIX + 'Provider Gender Code'].replace('', 'Unknown')
final_provider_list['Provider Gender Code'] = final_provider_list[NPPES_PREFIX + 'Provider Gender Code'].fillna('Unknown')
physicians = final_provider_list[final_provider_list[RIDOH_CREDENTIAL_COLUMN_NAME] == 'Physician']
group_by_dropdown = widgets.Dropdown(
options=['Specialty', 'Specialty and Gender'],
description='Group by:',
value='Specialty and Gender', # Default value
)
pc_to_fte_division_factor = widgets.IntText(
value=900, # Default value
step=10, # Step size
layout=widgets.Layout(width='100px')
)
pc_to_fte_division_factor_label = widgets.Label(
value='# PC Claims For 1 FTE:',
layout=widgets.Layout(width='150px', height='30px', display='flex', align_items='center')
)
all_to_fte_division_factor = widgets.IntText(
value=3360, # Default value
step=50, # Step size
layout=widgets.Layout(width='100px')
)
all_to_fte_division_factor_label = widgets.Label(
value='# All Claims For 1 FTE:',
layout=widgets.Layout(width='150px', height='30px', display='flex', align_items='center')
)
controls = widgets.HBox([group_by_dropdown, pc_to_fte_division_factor_label, pc_to_fte_division_factor, all_to_fte_division_factor_label, all_to_fte_division_factor])
def display_grouped(group_by, pc_to_fte_division_factor, all_to_fte_division_factor):
grouping_keys = [SPECIALTY_COLUMN_NAME]
if group_by == 'Specialty and Gender':
grouping_keys.append('Provider Gender Code')
grouped_df = physicians.groupby(grouping_keys).agg(
Total_PC_Claims=('APCD_CORE_PC_CLAIMS_COUNT', 'sum'),
Total_All_Claims=(APCD_TOTAL_CLAIMS_ALL_COL_NAME, 'sum'),
Number_Providers=(SPECIALTY_COLUMN_NAME, 'size'),
).reset_index()
grouped_df = grouped_df.rename(columns={
'Provider Gender Code': 'Gender',
'Total_PC_Claims': 'Total Primary Care Claims',
'Total_All_Claims': 'Total Claims',