-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathplot_benchmarks.py
executable file
·470 lines (376 loc) · 15.2 KB
/
plot_benchmarks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
#!/usr/bin/env python3
import json
import re
from pathlib import Path
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
BENCHMARKS = Path(__file__).parent / "benchmarks.json"
QUERY_RE = re.compile(r"\[(?P<column>FLAG|BOOL)\] (?P<index>.*)")
PLOT_DIR = Path(__file__).parent # / 'doc' / 'source' / 'plots'
def parse_plt(plt_str):
mtch = QUERY_RE.match(plt_str)
if not mtch:
raise ValueError(f"Could not parse plot string: {plt_str}")
return mtch.groups()
def plot_size(size_benchmarks):
plt.figure(figsize=(10, 6))
plt.title("Number of Bytes Saved per Row by Using a Mask")
plt.xlabel("Number of Flags")
plt.ylabel("Bytes / Row")
# color different x-ranges
plt.axvspan(1, 15, color="#D8DDEF", alpha=0.75)
plt.axvspan(15, 31, color="#A0A4B8", alpha=0.75)
plt.axvspan(31, 63, color="#7293A0", alpha=0.75)
# plt.axvspan(63, 127, color='#45B69C', alpha=0.75)
# create patches for the legend
small_int = mpatches.Patch(color="#D8DDEF", alpha=0.75, label="Small Int")
int = mpatches.Patch(color="#A0A4B8", alpha=0.75, label="Integer")
big_int = mpatches.Patch(color="#7293A0", alpha=0.75, label="Big Integer")
# extra_big_int = mpatches.Patch(
# color='#45B69C', alpha=0.75, label='Big Integer'
# )
count = size_benchmarks.pop("count", None)
if not count:
raise ValueError("No count found in benchmarks")
num_flags = []
for vendor, metrics in size_benchmarks.items():
num_flags = []
bytes_saved = []
for idx, (bools, flags) in enumerate(
zip(metrics["bools"]["table"], metrics["flags"]["table"])
):
num_flags.append(idx + 1)
bytes_saved.append((bools - flags) / count)
plt.plot(num_flags, bytes_saved, label=vendor)
if metrics["bools"].get("column", []) and metrics["flags"].get("column", []):
num_flags = []
bytes_saved = []
for idx, (bools, flags) in enumerate(
zip(metrics["bools"]["column"], metrics["flags"]["column"])
):
num_flags.append(idx + 1)
bytes_saved.append((bools - flags) / count)
plt.plot(num_flags, bytes_saved, label=f"{vendor} (column)")
# save the plot as a .png file
plt.xlim(min(num_flags), max(num_flags))
# add legend to the plot
plt.legend(
handles=[
small_int,
int,
big_int,
# extra_big_int,
*plt.gca().get_lines(),
]
)
plt.savefig(str(PLOT_DIR / "FlagSizeBenchmark.png"))
def plot_queries(queries):
plt.figure(figsize=(10, 6))
plt.title("Number of Bytes Saved per Row by Using a Mask")
plt.xlabel("Number of Flags")
plt.ylabel("Bytes / Row")
lines = [("all_time", "has_all"), ("any_time", "has_any"), ("exact_time", "exact")]
# Define colors for query types
query_colors = {
"exact": "blue",
"has_any": "green",
"has_all": "red",
}
# Define line styles for column/index types
index_styles = {
"[BOOL] MultiCol Index": "--", # Dashed line for BOOL indexes
"[FLAG] Single Index": "-", # Solid line for others
"[BOOL] Col Index": ":",
}
for vendor, indexes in queries.items():
plt.figure(figsize=(10, 6))
plt.title("Query Performance [{}]".format(vendor))
plt.xlabel("Table Rows")
plt.ylabel("Query Seconds")
count_min = None
count_max = None
for index, num_flags in indexes.items():
if "No Index" in index:
continue
for num_flag, counts in num_flags.items():
cnts = list(sorted((int(cnt) for cnt in counts.keys())))
count_min = cnts[0] if count_min is None else min(cnts[0], count_min)
count_max = cnts[-1] if count_max is None else max(cnts[-1], count_max)
plts = {}
for key, label in lines:
plts[label] = []
for count in cnts:
metrics = counts[str(count)]
for key, label in lines:
if key in metrics:
plts[label].append(metrics[key])
for label, plt_data in plts.items():
plt.plot(
cnts,
plt_data,
index_styles[index],
label=f"[{index}] ({label})",
color=query_colors[label],
)
# save the plot as a .png file
plt.xlim(count_min, count_max)
# plt.xscale("log")
# add legend to the plot
plt.legend(handles=[*plt.gca().get_lines()])
plt.savefig(str(PLOT_DIR / f"QueryPerformance_{vendor}.png"))
plt.show()
def plot_no_index_comparison(queries, rdbms="postgres", num_flags=16):
lines = [
("all_time", "has_all", "r"),
("any_time", "has_any", "g"),
("exact_time", "exact", "b"),
]
plots = queries.get(rdbms, {})
bool_no_index = None
flags_no_index = None
for plot, flag_metrics in plots.items():
parsed = parse_plt(plot)
if parsed == ("BOOL", "No Index"):
bool_no_index = flag_metrics.get(str(num_flags), {})
if parsed == ("FLAG", "No Index"):
flags_no_index = flag_metrics.get(str(num_flags), {})
if not (bool_no_index and flags_no_index):
raise ValueError(f'No "No Index data" found for {rdbms}: {num_flags} flags')
plt.figure(figsize=(10, 6))
plt.title(f"No Index [{rdbms}, num_flags={num_flags}]")
plt.xlabel("Table Rows")
plt.ylabel("Query Seconds")
count_min = None
count_max = None
for label, counts, style in [
("BOOL", bool_no_index, "--"),
("FLAG", flags_no_index, "-"),
]:
cnts = list(sorted((int(cnt) for cnt in counts.keys())))
count_min = cnts[0] if count_min is None else min(cnts[0], count_min)
count_max = cnts[-1] if count_max is None else max(cnts[-1], count_max)
plts = {}
for key, qry, color in lines:
plts[qry] = ([], color)
for count in cnts:
metrics = counts[str(count)]
for key, qry, color in lines:
if key in metrics:
plts[qry][0].append(metrics[key])
for qry, plt_data in plts.items():
plt.plot(
cnts, plt_data[0], f"{plt_data[1]}{style}", label=f"[{label}] {qry}"
)
# save the plot as a .png file
plt.xlim(count_min, count_max)
# plt.xscale("log")
# add legend to the plot
plt.legend(handles=[*plt.gca().get_lines()])
plt.savefig(str(PLOT_DIR / f"NoIndexQueryPerformance_{rdbms}.png"))
plt.show()
def plot_exact_index_comparison(queries, rdbms="postgres", num_flags=16):
lines = [("exact_time", "exact", "b"), ("table_size", "table_size", "r")]
plots = queries.get(rdbms, {})
bool_no_index = None
flags_no_index = None
for plot, flag_metrics in plots.items():
parsed = parse_plt(plot)
if parsed == ("BOOL", "MultiCol Index"):
bool_no_index = flag_metrics.get(str(num_flags), {})
if parsed == ("FLAG", "Single Index"):
flags_no_index = flag_metrics.get(str(num_flags), {})
if not (bool_no_index and flags_no_index):
raise ValueError(f'No "Exact Query" data found for {rdbms}: {num_flags} flags')
fig, ax = plt.subplots(figsize=(10, 6))
size_plt = ax.twinx()
plt.title(f"Indexed - Exact Queries [{rdbms}, num_flags={num_flags}]")
ax.set_xlabel("Table Rows")
ax.set_ylabel("Query Seconds")
size_plt.set_ylabel("Table Size (GB)")
count_min = None
count_max = None
handles = []
for label, counts, style in [
("BOOL", bool_no_index, "--"),
("FLAG", flags_no_index, "-"),
]:
cnts = list(sorted((int(cnt) for cnt in counts.keys())))
count_min = cnts[0] if count_min is None else min(cnts[0], count_min)
count_max = cnts[-1] if count_max is None else max(cnts[-1], count_max)
plts = {}
for key, qry, color in lines:
plts[qry] = ([], color)
for count in cnts:
metrics = counts[str(count)]
for key, qry, color in lines:
if key in metrics:
plts[qry][0].append(
metrics[key] / (1024**3)
if qry == "table_size"
else metrics[key]
)
for qry, plt_data in plts.items():
axis = ax
if qry == "table_size":
axis = size_plt
handles.append(
axis.plot(
cnts, plt_data[0], f"{plt_data[1]}{style}", label=f"[{label}] {qry}"
)[0]
)
# save the plot as a .png file
ax.set_xlim(count_min, count_max)
# plt.xscale("log")
# add legend to the plot
ax.legend(handles=handles)
plt.savefig(str(PLOT_DIR / f"IndexedExactQueryPerformance_{rdbms}.png"))
plt.show()
def plot_any_all_index_comparison(queries, rdbms="postgres", num_flags=16):
lines = [
("all_time", "has_all", "g"),
("any_time", "has_any", "b"),
("table_size", "table_size", "r"),
]
plots = queries.get(rdbms, {})
bool_multiindex = None
bool_colindex = None
flags_singleidx = None
flags_noidx = None
for plot, flag_metrics in plots.items():
parsed = parse_plt(plot)
if parsed == ("BOOL", "MultiCol Index"):
bool_multiindex = flag_metrics.get(str(num_flags), {})
if parsed == ("BOOL", "Col Index"):
bool_colindex = flag_metrics.get(str(num_flags), {})
if parsed == ("FLAG", "Single Index"): # todo change this to multi col
flags_singleidx = flag_metrics.get(str(num_flags), {})
if parsed == ("FLAG", "No Index"): # todo change this to multi col
flags_noidx = flag_metrics.get(str(num_flags), {})
if not (bool_multiindex and flags_singleidx):
raise ValueError(f'No "Exact Query" data found for {rdbms}: {num_flags} flags')
fig, ax = plt.subplots(figsize=(10, 6))
size_plt = ax.twinx()
plt.title(f"Indexed - Any/All Queries [{rdbms}, num_flags={num_flags}]")
ax.set_xlabel("Table Rows")
ax.set_ylabel("Query Seconds")
size_plt.set_ylabel("Table Size (GB)")
count_min = None
count_max = None
handles = []
for label, counts, style in [
("BOOL MultiCol Index", bool_multiindex, "--"),
# ('BOOL Col Index', bool_colindex, '-.'),
("FLAG Single Index", flags_singleidx, "-"),
("FLAG No Index", flags_singleidx, "-."),
]:
cnts = list(sorted((int(cnt) for cnt in counts.keys())))
count_min = cnts[0] if count_min is None else min(cnts[0], count_min)
count_max = cnts[-1] if count_max is None else max(cnts[-1], count_max)
plts = {}
for key, qry, color in lines:
plts[qry] = ([], color)
for count in cnts:
metrics = counts[str(count)]
for key, qry, color in lines:
if key in metrics:
plts[qry][0].append(
metrics[key] / (1024**3)
if qry == "table_size"
else metrics[key]
)
for qry, plt_data in plts.items():
axis = ax
if qry == "table_size":
axis = size_plt
handles.append(
axis.plot(
cnts, plt_data[0], f"{plt_data[1]}{style}", label=f"[{label}] {qry}"
)[0]
)
# save the plot as a .png file
ax.set_xlim(count_min, count_max)
# plt.xscale("log")
# add legend to the plot
ax.legend(handles=handles)
plt.savefig(str(PLOT_DIR / f"IndexedAnyAllQueryPerformance_{rdbms}.png"))
plt.show()
def plot_table_sizes(queries, rdbms="postgres", num_flags=16):
lines = [("table_size", "table_size", "r")]
plots = queries.get(rdbms, {})
lines = []
for plot, metrics in plots.items():
parsed = parse_plt(plot)
index_color = {
"No Index": "g",
# comparable - service the same queries
"MultiCol Index": "b",
"Single Index": "b",
"Col Index": "r",
}.get(parsed[1], "b")
if not index_color:
continue
lines.append(
(
" ".join(parsed),
metrics.get(str(num_flags), {}),
f'{index_color}{"--" if parsed[0] == "BOOL" else "-"}',
)
)
if not lines:
raise ValueError(f"No table size data found for {rdbms}: {num_flags} flags")
plt.figure(figsize=(10, 6))
plt.title(f"Table+Index Size [{rdbms}, num_flags={num_flags}]")
plt.xlabel("Table Rows")
plt.ylabel("Size (GB)")
count_min = None
count_max = None
for label, counts, style in lines:
cnts = list(sorted((int(cnt) for cnt in counts.keys())))
count_min = cnts[0] if count_min is None else min(cnts[0], count_min)
count_max = cnts[-1] if count_max is None else max(cnts[-1], count_max)
data = []
for count in cnts:
metrics = counts[str(count)]
if "table_size" in metrics:
data.append(metrics["table_size"] / (1024**3))
plt.plot(cnts, data, style, label=label)
# save the plot as a .png file
plt.xlim(count_min, count_max)
# add legend to the plot
plt.legend(handles=[*plt.gca().get_lines()])
plt.savefig(str(PLOT_DIR / f"TableSize_{rdbms}.png"))
plt.show()
if __name__ == "__main__":
if BENCHMARKS.is_file():
with open(BENCHMARKS, "r") as bf:
benchmarks = json.load(bf) or {}
if "size" in benchmarks:
plot_size(benchmarks["size"])
if "queries" in benchmarks:
plot_queries(benchmarks["queries"])
for rdbms in ["postgres", "mysql", "sqlite", "oracle"]:
try:
plot_no_index_comparison(benchmarks["queries"], rdbms=rdbms)
except ValueError:
print("No data for No Index plot. Skipping...")
continue
for rdbms in ["postgres", "mysql", "sqlite", "oracle"]:
try:
plot_exact_index_comparison(benchmarks["queries"], rdbms=rdbms)
except ValueError:
print("No data for Exact comparison plot. Skipping...")
continue
for rdbms in ["postgres", "mysql", "sqlite", "oracle"]:
try:
plot_any_all_index_comparison(benchmarks["queries"], rdbms=rdbms)
except ValueError:
print("No data for Any/All comparison plot. Skipping...")
continue
for rdbms in ["postgres", "mysql", "sqlite", "oracle"]:
try:
plot_table_sizes(benchmarks["queries"], rdbms=rdbms)
except ValueError:
print("No data for table size comparison plot. Skipping...")
continue
else:
print("No benchmarks found - run benchmarks tests first")