-
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathPMEM_arch.asm
1398 lines (1094 loc) · 38.8 KB
/
PMEM_arch.asm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
; pmem_arch.asm - Architecture definition for PMEM (Persistent Memory)
; Low-level implementation of dual volatile/non-volatile memory layers
.section .data
; ===== Memory Region Definitions =====
VOLATILE_MEM_BASE: .quad 0x2000000000000000 ; Base address for volatile memory
VOLATILE_MEM_SIZE: .quad 0x0000000040000000 ; 1GB volatile memory
NONVOL_MEM_BASE: .quad 0x4000000000000000 ; Base address for non-volatile memory
NONVOL_MEM_SIZE: .quad 0x0000000400000000 ; 16GB non-volatile memory
; ===== Memory Management Tables =====
VOL_ALLOC_TABLE: .quad 0x2000000000000000 ; Allocation table for volatile memory
VOL_ALLOC_TABLE_SIZE: .quad 0x0000000000100000 ; 1MB allocation table
NONVOL_ALLOC_TABLE: .quad 0x4000000000000000 ; Allocation table for non-volatile memory
NONVOL_ALLOC_TABLE_SIZE:.quad 0x0000000000400000 ; 4MB allocation table
; ===== Memory Transfer Control =====
TRANSFER_CONTROL_REG: .quad 0x0000000000000000 ; Control for memory transfers between layers
GRADIENT_THRESHOLD: .quad 0x0000000000000100 ; Threshold for tree hierarchy gradient
STM_PATTERN_COUNT: .quad 0x0000000000000000 ; Number of identified STM patterns
STM_PATTERN_TABLE: .quad 0x2000000000100000 ; Table of STM patterns for mimeograph
; ===== Tree Hierarchy =====
TREE_ROOT: .quad 0x4000000000400000 ; Root of memory hierarchy tree
CURRENT_NODE: .quad 0x4000000000400000 ; Current node in traversal
.section .text
.global _start
_start:
; Initialize both memory layers
call init_pmem_architecture
; Set up tree hierarchy
call init_tree_hierarchy
; Enter main processing loop
jmp pmem_main_loop
init_pmem_architecture:
; Initialize volatile (short-term) memory layer
mov rax, [VOLATILE_MEM_BASE]
mov rbx, [VOLATILE_MEM_SIZE]
call init_volatile_memory
test rax, rax
jz _pmem_init_error
; Initialize non-volatile (long-term) memory layer
mov rax, [NONVOL_MEM_BASE]
mov rbx, [NONVOL_MEM_SIZE]
call init_nonvolatile_memory
test rax, rax
jz _pmem_init_error
; Initialize memory transfer mechanisms
call init_memory_transfer
; Zero out control registers
xor rax, rax
mov [TRANSFER_CONTROL_REG], rax
mov [STM_PATTERN_COUNT], rax
ret
_pmem_init_error:
; Handle initialization error
mov rax, 60 ; exit syscall
mov rdi, 1 ; error code 1
syscall
init_tree_hierarchy:
; Allocate root node in non-volatile memory
mov rbx, 64 ; Size of node structure (64 bytes)
call allocate_nonvolatile_memory
mov [TREE_ROOT], rax
mov [CURRENT_NODE], rax
; Initialize root node structure
mov rbx, rax ; rbx points to root node
mov qword ptr [rbx], 0 ; Parent pointer = NULL
mov qword ptr [rbx+8], 0 ; Left child = NULL
mov qword ptr [rbx+16], 0 ; Right child = NULL
mov qword ptr [rbx+24], 0 ; Data pointer = NULL
mov qword ptr [rbx+32], 0xFFFFFFFF ; Max capacity
mov qword ptr [rbx+40], 0 ; Current usage
mov qword ptr [rbx+48], 0 ; Flags
mov qword ptr [rbx+56], 0 ; Reserved
ret
pmem_main_loop:
; Process volatile memory operations
call process_volatile_memory
; Check for transfer conditions based on gradient
call calculate_memory_gradient
cmp rax, [GRADIENT_THRESHOLD]
jl .no_transfer
; Transfer memories between layers
call transfer_memory_between_layers
.no_transfer:
; Process non-volatile memory maintenance
call process_nonvolatile_memory
; Mimemograph STM operations - pattern identification and distribution
call execute_mimeograph_protocol
; Sleep briefly to reduce CPU usage
mov rax, 35 ; nanosleep syscall
mov rdi, timespec_10ms ; 10ms sleep duration
mov rsi, 0 ; no remainder needed
syscall
; Continue loop indefinitely
jmp pmem_main_loop
; ===== Memory Gradient Calculation =====
calculate_memory_gradient:
; Calculate importance gradient for memory transfer decisions
; Higher return value = higher priority for transfer
push rbp
mov rbp, rsp
; Start with usage-based gradient
; More usage = higher gradient = more likely to transfer to non-volatile
mov rcx, [CURRENT_NODE]
mov rdx, [rcx+32] ; Max capacity
mov r8, [rcx+40] ; Current usage
; Calculate percentage: (current_usage * 100) / max_capacity
; This gives us a 0-100 value representing fullness
xor rdx, rdx ; Clear high bits for division
mov rax, r8 ; Current usage -> rax
mov rbx, 100
mul rbx ; rax = current_usage * 100
div rdx ; rax = result / max_capacity
; Apply time-decay factor - older memories get higher gradient
; They're more likely to be moved to non-volatile storage
call apply_time_decay_factor
; Apply node depth factor - deeper nodes get higher gradient
; Deeper in tree = higher specificity = more valuable
call apply_node_depth_factor
; Return final gradient value in rax
pop rbp
ret
; ===== Mimeograph STM Protocol Implementation =====
execute_mimeograph_protocol:
; Implementation of STM copy/paste protocol for volatile memory
push rbp
mov rbp, rsp
; Step 1: Identify patterns in volatile memory
call identify_stm_patterns
mov rcx, [STM_PATTERN_COUNT]
test rcx, rcx
jz .no_patterns_found
; Step 2: Create mimeographs (copies) of important patterns
call create_pattern_mimeographs
; Step 3: Distribute mimeographs to memory locations
call distribute_mimeographs
; Step 4: Update pattern reference table
call update_pattern_references
.no_patterns_found:
pop rbp
ret
; ===== Pattern Identification for Volatile Memory =====
identify_stm_patterns:
; Identify repeating or important patterns in volatile memory
push rbp
mov rbp, rsp
sub rsp, 32 ; Local variables
; Get volatile memory base and scan range
mov rax, [VOLATILE_MEM_BASE]
add rax, [VOL_ALLOC_TABLE_SIZE] ; Skip allocation table
mov [rbp-8], rax ; Store base scan address
mov rbx, [VOLATILE_MEM_SIZE]
sub rbx, [VOL_ALLOC_TABLE_SIZE] ; Adjust for allocation table
mov [rbp-16], rbx ; Store scan size
; Initialize pattern counter
xor rcx, rcx
mov [STM_PATTERN_COUNT], rcx
; Set pattern table pointer
mov rdx, [STM_PATTERN_TABLE]
mov [rbp-24], rdx
; Scan for repeating byte sequences
; This simplistic implementation looks for 8-byte repeating patterns
; A real implementation would use more sophisticated pattern recognition
mov rsi, [rbp-8] ; Current scan position
mov rdi, rsi ; End position
add rdi, [rbp-16]
sub rdi, 16 ; Account for pattern size
.scan_loop:
cmp rsi, rdi
jae .scan_complete
; Check if current position contains a pattern of interest
; For demo purposes, we'll consider any non-zero 8-byte sequence
mov rax, [rsi]
test rax, rax
jz .next_position
; Check if pattern appears multiple times
call count_pattern_occurrences
cmp rax, 3 ; Threshold for significance
jl .next_position
; Record pattern in table
mov rdx, [rbp-24] ; Pattern table pointer
mov [rdx], rsi ; Store pattern address
mov [rdx+8], rax ; Store occurrence count
; Update pattern table pointer and count
add qword ptr [rbp-24], 16
inc qword ptr [STM_PATTERN_COUNT]
.next_position:
add rsi, 8 ; Move to next potential pattern
jmp .scan_loop
.scan_complete:
add rsp, 32
pop rbp
ret
; ===== Memory Transfer Between Layers =====
transfer_memory_between_layers:
; Transfers memory between volatile and non-volatile layers
; Based on gradient calculations and pattern importance
push rbp
mov rbp, rsp
sub rsp, 48 ; Local variables
; Determine transfer direction
; 0 = volatile to non-volatile (persist)
; 1 = non-volatile to volatile (recall)
call determine_transfer_direction
mov [rbp-8], rax ; Store direction
; Get source and destination addresses based on direction
cmp qword ptr [rbp-8], 0
jne .recall_operation
.persist_operation:
; Volatile to non-volatile transfer (persist)
; Determine which volatile memory blocks should be persisted
call select_blocks_for_persistence
mov [rbp-16], rax ; Source address in volatile memory
mov [rbp-24], rbx ; Size to transfer
; Allocate space in non-volatile memory
mov rbx, [rbp-24]
call allocate_nonvolatile_memory
mov [rbp-32], rax ; Destination address in non-volatile memory
; Perform the actual transfer
mov rdi, [rbp-32] ; Destination
mov rsi, [rbp-16] ; Source
mov rdx, [rbp-24] ; Size
call memory_copy
; Update tree hierarchy to reflect new non-volatile memory
mov rax, [rbp-32] ; Address of new non-volatile memory
mov rbx, [rbp-24] ; Size of memory
call update_tree_with_memory
jmp .transfer_complete
.recall_operation:
; Non-volatile to volatile transfer (recall)
; Determine which non-volatile blocks should be recalled
call select_blocks_for_recall
mov [rbp-16], rax ; Source address in non-volatile memory
mov [rbp-24], rbx ; Size to transfer
; Allocate space in volatile memory
mov rbx, [rbp-24]
call allocate_volatile_memory
mov [rbp-32], rax ; Destination address in volatile memory
; Perform the actual transfer
mov rdi, [rbp-32] ; Destination
mov rsi, [rbp-16] ; Source
mov rdx, [rbp-24] ; Size
call memory_copy
; Update volatile memory pattern table
mov rax, [rbp-32] ; Address of new volatile memory
mov rbx, [rbp-24] ; Size of memory
call update_pattern_table
.transfer_complete:
; Reset transfer control register
mov qword ptr [TRANSFER_CONTROL_REG], 0
add rsp, 48
pop rbp
ret
; pmem_tree.asm - Tree hierarchy implementation for PMEM
; Implements memory organization using a hierarchical tree structure
.section .text
.global allocate_tree_node
.global navigate_to_child
.global navigate_to_parent
.global insert_memory_block
.global retrieve_memory_block
; ===== Tree Node Operations =====
allocate_tree_node:
; Allocates a new node in the memory hierarchy tree
; Input: RCX = parent node pointer
; Output: RAX = new node pointer or 0 if failed
push rbp
mov rbp, rsp
; Allocate 64 bytes for node structure in non-volatile memory
mov rbx, 64
call allocate_nonvolatile_memory
test rax, rax
jz .allocation_failed
; Initialize node structure
mov rbx, rax ; rbx now points to new node
; Set parent pointer
mov [rbx], rcx
; Initialize child pointers to NULL
mov qword ptr [rbx+8], 0 ; Left child = NULL
mov qword ptr [rbx+16], 0 ; Right child = NULL
; Initialize data pointer to NULL
mov qword ptr [rbx+24], 0 ; Data pointer = NULL
; Set default capacity
mov qword ptr [rbx+32], 0x1000 ; Default capacity
; Initialize usage counter
mov qword ptr [rbx+40], 0 ; Current usage = 0
; Get current timestamp for creation time
call get_current_timestamp
mov qword ptr [rbx+48], rax ; Set creation timestamp
; Set flags to 0
mov qword ptr [rbx+56], 0 ; Flags = 0
; If parent is NULL, we're creating the root node
test rcx, rcx
jz .no_parent_update
; Update parent's child pointer
; Check if left child is available
mov rdx, [rcx+8] ; Get left child
test rdx, rdx
jnz .use_right_child
; Use left child
mov [rcx+8], rax
jmp .no_parent_update
.use_right_child:
; Check if right child is available
mov rdx, [rcx+16] ; Get right child
test rdx, rdx
jnz .allocation_failed ; Both children occupied, can't add node
; Use right child
mov [rcx+16], rax
.no_parent_update:
; Return new node pointer in RAX
jmp .done
.allocation_failed:
xor rax, rax ; Return NULL on failure
.done:
pop rbp
ret
navigate_to_child:
; Navigate to a child node in the tree
; Input: RCX = current node pointer
; RDX = 0 for left child, 1 for right child
; Output: RAX = child node pointer or 0 if no child
push rbp
mov rbp, rsp
; Validate input
test rcx, rcx
jz .invalid_node
; Choose left or right child based on RDX
test rdx, rdx
jnz .get_right_child
.get_left_child:
mov rax, [rcx+8] ; Get left child pointer
jmp .check_result
.get_right_child:
mov rax, [rcx+16] ; Get right child pointer
.check_result:
; If result is valid, update CURRENT_NODE
test rax, rax
jz .invalid_node
mov [CURRENT_NODE], rax
jmp .done
.invalid_node:
xor rax, rax ; Return NULL for invalid node
.done:
pop rbp
ret
navigate_to_parent:
; Navigate to parent node in the tree
; Input: RCX = current node pointer
; Output: RAX = parent node pointer or 0 if no parent
push rbp
mov rbp, rsp
; Validate input
test rcx, rcx
jz .invalid_node
; Get parent pointer
mov rax, [rcx]
; If result is valid, update CURRENT_NODE
test rax, rax
jz .invalid_node
mov [CURRENT_NODE], rax
jmp .done
.invalid_node:
xor rax, rax ; Return NULL for invalid node
.done:
pop rbp
ret
insert_memory_block:
; Insert a memory block into the tree hierarchy
; Input: RCX = data pointer
; RDX = data size
; R8 = importance (0-255)
; Output: RAX = 1 if successful, 0 if failed
push rbp
mov rbp, rsp
sub rsp, 32 ; Local variables
; Store input parameters
mov [rbp-8], rcx ; Data pointer
mov [rbp-16], rdx ; Data size
mov [rbp-24], r8 ; Importance
; Find appropriate node for insertion based on importance
mov rcx, r8 ; Importance value
call find_node_by_importance
test rax, rax
jz .insertion_failed
mov [rbp-32], rax ; Store node pointer
; Check if node has enough capacity
mov rcx, [rax+32] ; Get max capacity
mov rdx, [rax+40] ; Get current usage
add rdx, [rbp-16] ; Add new data size
cmp rdx, rcx
jg .insertion_failed ; Not enough space
; Allocate memory in non-volatile storage for persistent copy
mov rbx, [rbp-16] ; Size to allocate
call allocate_nonvolatile_memory
test rax, rax
jz .insertion_failed
; Copy data to non-volatile memory
mov rdi, rax ; Destination
mov rsi, [rbp-8] ; Source
mov rdx, [rbp-16] ; Size
call memory_copy
; Update node with new data pointer
mov rcx, [rbp-32] ; Node pointer
mov [rcx+24], rax ; Update data pointer
; Update usage counter
mov rdx, [rcx+40] ; Current usage
add rdx, [rbp-16] ; Add data size
mov [rcx+40], rdx ; Update usage counter
; Update timestamp
call get_current_timestamp
mov rcx, [rbp-32]
mov [rcx+48], rax ; Update timestamp
; Set success flag
mov rax, 1
jmp .done
.insertion_failed:
xor rax, rax ; Return 0 for failure
.done:
add rsp, 32
pop rbp
ret
retrieve_memory_block:
; Retrieve a memory block from the tree
; Input: RCX = node pointer
; Output: RAX = data pointer or 0 if no data
; RBX = data size
push rbp
mov rbp, rsp
; Validate input
test rcx, rcx
jz .invalid_node
; Get data pointer and size
mov rax, [rcx+24] ; Data pointer
mov rbx, [rcx+40] ; Size (using current usage as size)
; Update access timestamp
call get_current_timestamp
mov [rcx+48], rax ; Update timestamp
; Check if data exists
test rax, rax
jnz .done
.invalid_node:
xor rax, rax ; Return NULL for invalid node
xor rbx, rbx ; Return 0 size
.done:
pop rbp
ret
find_node_by_importance:
; Find appropriate node for a given importance value
; Input: RCX = importance (0-255)
; Output: RAX = node pointer
push rbp
mov rbp, rsp
sub rsp, 16 ; Local variables
; Store importance
mov [rbp-8], rcx
; Start at root node
mov rax, [TREE_ROOT]
mov [rbp-16], rax ; Current node
.node_search_loop:
; Check if we've reached a leaf node
mov rax, [rbp-16] ; Current node
mov rbx, [rax+8] ; Left child
mov rcx, [rax+16] ; Right child
; If both children are NULL, we've found our leaf
test rbx, rbx
jnz .continue_search
test rcx, rcx
jnz .continue_search
; Return current node
mov rax, [rbp-16]
jmp .search_done
.continue_search:
; Determine which branch to take based on importance
mov rdx, [rbp-8] ; Importance
cmp rdx, 128 ; Mid-point of importance range
jl .go_left
.go_right:
; Choose right child if available
mov rax, [rbp-16]
mov rcx, [rax+16] ; Right child
test rcx, rcx
jz .go_left ; Fall back to left if right is NULL
; Update current node to right child
mov [rbp-16], rcx
jmp .node_search_loop
.go_left:
; Choose left child if available
mov rax, [rbp-16]
mov rcx, [rax+8] ; Left child
test rcx, rcx
jz .search_done ; Return current if left is NULL
; Update current node to left child
mov [rbp-16], rcx
jmp .node_search_loop
.search_done:
add rsp, 16
pop rbp
ret
; pmem_stm.asm - Short-term memory (volatile) operations
; Implements the mimeograph STM protocol for short-term memory management
.section .text
.global create_pattern_mimeographs
.global distribute_mimeographs
.global update_pattern_references
; ===== Mimeograph Creation =====
create_pattern_mimeographs:
; Create copies (mimeographs) of identified patterns
; Uses pattern table populated by identify_stm_patterns
push rbp
mov rbp, rsp
sub rsp, 32 ; Local variables
; Get pattern count and table address
mov rcx, [STM_PATTERN_COUNT]
test rcx, rcx
jz .no_patterns
mov rdx, [STM_PATTERN_TABLE]
mov [rbp-8], rdx ; Store pattern table address
; Initialize pattern index
mov qword ptr [rbp-16], 0 ; Current pattern index
.mimeograph_loop:
; Check if we've processed all patterns
mov rax, [rbp-16] ; Current index
cmp rax, rcx ; Compare with pattern count
jge .mimeograph_complete
; Calculate current pattern entry address
mov rdx, [rbp-8] ; Pattern table base
mov rax, [rbp-16] ; Current index
shl rax, 4 ; Multiply by 16 (entry size)
add rdx, rax ; Pattern entry address
; Get pattern address and occurrence count
mov rsi, [rdx] ; Pattern address
mov rdi, [rdx+8] ; Occurrence count
; Skip patterns with low importance
cmp rdi, 2
jle .next_pattern
; Allocate memory for mimeograph
mov rbx, 32 ; Size of mimeograph (pattern + metadata)
call allocate_volatile_memory
test rax, rax
jz .next_pattern
; Store mimeograph address
mov [rbp-24], rax
; Copy pattern data to mimeograph
mov rdi, rax ; Destination
add rdi, 16 ; Skip metadata section
mov rsi, [rdx] ; Source (original pattern)
mov rdx, 8 ; Size (8 bytes)
call memory_copy
; Set up mimeograph metadata
mov rax, [rbp-24] ; Mimeograph address
mov rbx, [rdx] ; Original pattern address
mov [rax], rbx ; Store original address
mov rbx, [rdx+8] ; Occurrence count
mov [rax+8], rbx ; Store importance
.next_pattern:
; Increment pattern index
inc qword ptr [rbp-16]
jmp .mimeograph_loop
.mimeograph_complete:
.no_patterns:
add rsp, 32
pop rbp
ret
distribute_mimeographs:
; Distribute mimeographs to appropriate memory locations
; based on pattern importance and context
push rbp
mov rbp, rsp
sub rsp, 32 ; Local variables
; Get pattern count and table address
mov rcx, [STM_PATTERN_COUNT]
test rcx, rcx
jz .no_patterns
mov rdx, [STM_PATTERN_TABLE]
mov [rbp-8], rdx ; Store pattern table address
; Initialize pattern index
mov qword ptr [rbp-16], 0 ; Current pattern index
.distribution_loop:
; Check if we've processed all patterns
mov rax, [rbp-16] ; Current index
cmp rax, rcx ; Compare with pattern count
jge .distribution_complete
; Calculate current pattern entry address
mov rdx, [rbp-8] ; Pattern table base
mov rax, [rbp-16] ; Current index
shl rax, 4 ; Multiply by 16 (entry size)
add rdx, rax ; Pattern entry address
; Get pattern address and occurrence count
mov rsi, [rdx] ; Pattern address
mov rdi, [rdx+8] ; Occurrence count (importance)
; Determine target locations based on importance
; Higher importance = more copies distributed
mov [rbp-24], rdi ; Store importance
; Create at least one copy for each 3 points of importance
; up to a maximum of 5 copies
mov rax, rdi
xor rdx, rdx
mov rbx, 3
div rbx ; RAX = importance / 3
; Cap at 5 copies
cmp rax, 5
jle .copy_count_ok
mov rax, 5
.copy_count_ok:
; Store copy count
mov [rbp-32], rax
; Create and distribute copies
call distribute_pattern_copies
.next_distribution:
; Increment pattern index
inc qword ptr [rbp-16]
jmp .distribution_loop
.distribution_complete:
.no_patterns:
add rsp, 32
pop rbp
ret
distribute_pattern_copies:
; Distribute copies of a pattern to multiple memory locations
; Input: RSI = pattern address
; RAX = number of copies to create
push rbp
mov rbp, rsp
sub rsp, 32 ; Local variables
; Store parameters
mov [rbp-8], rsi ; Pattern address
mov [rbp-16], rax ; Copy count
; Initialize copy index
mov qword ptr [rbp-24], 0 ; Current copy index
.copy_loop:
; Check if we've created all copies
mov rax, [rbp-24] ; Current index
cmp rax, [rbp-16] ; Compare with copy count
jge .copying_complete
; Determine target location based on copy index
; This would use a memory placement algorithm in a real system
; For simplicity, we'll just space them evenly in volatile memory
; Allocate memory for the copy
mov rbx, 16 ; Size of copy (8 bytes + 8 bytes metadata)
call allocate_volatile_memory
test rax, rax
jz .next_copy
; Store copy address
mov [rbp-32], rax
; Copy pattern data
mov rdi, rax ; Destination
add rdi, 8 ; Skip metadata section
mov rsi, [rbp-8] ; Source (original pattern)
mov rdx, 8 ; Size (8 bytes)
call memory_copy
; Set up copy metadata
mov rax, [rbp-32] ; Copy address
mov rbx, [rbp-8] ; Original pattern address
mov [rax], rbx ; Store reference to original
.next_copy:
; Increment copy index
inc qword ptr [rbp-24]
jmp .copy_loop
.copying_complete:
add rsp, 32
pop rbp
ret
update_pattern_references:
; Update reference indices after pattern distribution
; This maintains the association between originals and copies
push rbp
mov rbp, rsp
sub rsp, 16 ; Local variables
; Get pattern count
mov rcx, [STM_PATTERN_COUNT]
test rcx, rcx
jz .no_patterns
; Allocate reference counter table (one counter per pattern)
mov rax, rcx
shl rax, 3 ; Multiply by 8 (counter size)
mov rbx, rax
call allocate_volatile_memory
test rax, rax
jz .no_patterns
; Initialize counters to zero
mov [rbp-8], rax ; Store counter table address
mov rdi, rax ; Destination
xor rsi, rsi ; Value to set (zero)
mov rdx, rbx ; Size
call memory_set
; Scan volatile memory for copies and update counters
call scan_and_update_references
; Free counter table
mov rax, [rbp-8]
call free_volatile_memory
.no_patterns:
add rsp, 16
pop rbp
ret
scan_and_update_references:
; Scan memory for pattern copies and update reference counters
; Input: RBP-8 = counter table address
push rbp
mov rbp, rsp
sub rsp, 32 ; Local variables
; Get volatile memory details for scanning
mov rax, [VOLATILE_MEM_BASE]
add rax, [VOL_ALLOC_TABLE_SIZE]
mov [rbp-16], rax ; Scan start address
mov rbx, [VOLATILE_MEM_SIZE]
sub rbx, [VOL_ALLOC_TABLE_SIZE]
mov [rbp-24], rbx ; Scan size
; Calculate scan end address
mov rax, [rbp-16]
add rax, [rbp-24]
mov [rbp-32], rax ; Scan end address
; Start scanning at the beginning
mov rsi, [rbp-16] ; Current scan position
.scan_loop:
; Check if we've reached the end
cmp rsi, [rbp-32]
jae .scan_complete
; Check if current memory block is a pattern copy
; In a real system, there would be metadata or markers
; For simplicity, we assume every 16-byte aligned block could be a copy
; Assuming pattern copies have an 8-byte header with original pattern address
mov rax, [rsi] ; Read potential reference to original
; Check if this could be a valid reference
; (very simplified check - a real system would be more robust)
call is_valid_pattern_reference
test rax, rax
jz .next_block
; Update reference counter for the original pattern
call update_reference_counter
.next_block:
; Move to next potential block
add rsi, 16 ; Assuming 16-byte blocks
jmp .scan_loop
.scan_complete:
add rsp, 32
pop rbp
ret
is_valid_pattern_reference:
; Check if an address could be a valid pattern reference
; Input: RAX = potential reference address
; Output: RAX = 1 if valid, 0 if not
; Check if address is within volatile memory range
cmp rax, [VOLATILE_MEM_BASE]
jb .invalid_reference
mov rbx, [VOLATILE_MEM_BASE]
add rbx, [VOLATILE_MEM_SIZE]
cmp rax, rbx
jae .invalid_reference
; Check alignment
test rax, 7 ; Check if multiple of 8
jnz .invalid_reference
; Valid reference
mov rax, 1
ret
.invalid_reference:
xor rax, rax
ret
update_reference_counter:
; Update reference counter for a pattern
; Input: RAX = original pattern address
push rbp
mov rbp, rsp
sub rsp, 16 ; Local variables
; Store pattern address
mov [rbp-8], rax
; Find pattern index in pattern table
mov rdx, [STM_PATTERN_TABLE]
mov rcx, [STM_PATTERN_COUNT]
xor r8, r8 ; Pattern index
.find_pattern_loop:
; Check if we've checked all patterns
cmp r8, rcx
jge .pattern_not_found
; Calculate pattern entry address
mov rax, r8
shl rax, 4 ; Multiply by 16 (entry size)
add rax, rdx ; Pattern entry address
; Compare with original pattern address
cmp [rax], [rbp-8]
je .pattern_found
; Try next pattern
inc r8
jmp .find_pattern_loop
.pattern_found:
; Increment counter for this pattern