-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecode.py
341 lines (252 loc) · 9.04 KB
/
decode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# Specific script name.
SCRIPT_NAME = 'decode.py'
# Specify script version.
VERSION = 1.0
import argparse
import pandas as pd
import os
import numpy as np
from PIL import Image, ImageSequence
import locsutil as lu
import time
MESSAGE = f"""
%s version %s. Requires a path to segmented DNA-PAINT localization file (HDF5) and SABER pre-decoding
binary mask file (tiff). Optionally takes in DAPI mask and other parameters.
Returns decoded DNA-PAINT localization file(s).
""" % (SCRIPT_NAME, VERSION)
def main():
"""
Decodes DNA-PAINT localization with SABER pre-decoding masks.
Parameters (user input)
-------
input : str
mask : str
dapi : str, optional
idcol : str, optional
output : str, optional
Returns
-------
None
"""
# Allows user to input parameters on command line.
user_input = argparse.ArgumentParser(description=MESSAGE)
# Inputs file names.
required_named = user_input.add_argument_group('required arguments')
required_named.add_argument('-f', '--input', action='store', required=True, type=str,
help='Input DNA-PAINT locs segmented with HDBSCAN/DBSCAN.')
required_named.add_argument('-m', '--mask', action='store', required=True, type=str,
help='Input SABER signal binary masks as a tiff stack.')
# Optional parameters to filter out bad localizations.
user_input.add_argument('-d', '--dapi', action='store', type=str,
help='Input a DAPI signal binary mask as a single tiff.')
user_input.add_argument('-c', '--clustercol', action='store', type=str, default='hdbscan',
help='Specify cluster id col name, default=hdbscan')
user_input.add_argument('-o', '--output', action='store', type=str,
help='Specify output file prefix')
args = user_input.parse_args()
input_locs = args.input
input_mask = args.mask
input_dapi = args.dapi
cluster_col = args.clustercol
out_name = args.output
# Executes decoding
decode_paint(input_locs, input_mask, input_dapi, out_name, cluster_col)
def decode_paint(locs_file: str, mask_file: str, dapi_file=None, out_name=None, cluster_col='hdbscan') -> None:
"""
Decodes DNA-PAINT localization with SABER pre-decoding masks.
Parameters
----------
locs_file : str
mask_file : str
dapi_file : str
out_name : str
cluster_col : str
Returns
-------
None
"""
# Counts process time
start = time.time()
# Imports data and a yaml file
data = lu.read_locs(locs_file)
masks = read_masks(mask_file)
yaml_in = locs_file.rstrip('hdf5') + 'yaml'
frame_val, height_val, width_val = lu.read_yaml(yaml_in)
# Filters out clusters outside nucleus based on DAPI signal if specified
if dapi_file:
nucl_mask = read_masks(dapi_file)[0]
data = filter_clusters(data, nucl_mask, cluster_col)
print(f'Elapsed_time: {time.time() - start} [sec]')
# Gets working directory path
work_dir = os.path.dirname(locs_file)
out_path = os.path.join(work_dir, 'decoded')
if not os.path.exists(out_path):
os.makedirs(out_path)
# Generates output file name prefix
file_base = os.path.basename(locs_file)
file_stem = lu.clean_filename(file_base)
if out_name:
out_name = f'{file_stem}_{out_name}'
else:
out_name = f'{file_stem}_decoded'
out_hdf5_name = os.path.join(out_path, out_name) + '.hdf5'
out_yaml_name = os.path.join(out_path, out_name) + '.yaml'
# Decodes clusters
decoded = decode_clusters(data, masks, cluster_col)
decoded.dropna(inplace=True)
# Outputs decoded files
lu.write_locs(decoded, out_hdf5_name)
lu.write_yaml(frame_val, height_val, width_val, out_yaml_name)
def read_masks(im_stack: str) -> list:
"""
Parameters
----------
im_stack : str
A path to SABER pre-decoding masks
Returns
-------
masks : list of np.array
8-bit SABER pre-decoding image stack
"""
im = Image.open(im_stack)
masks = []
for i, page in enumerate(ImageSequence.Iterator(im)):
masks.append(np.array(page))
return masks
def get_mask_val(masks: list, slice: int, coordinate: tuple) -> int:
"""
Parameters
----------
masks : list
slice : int
coordinate : tuple
Returns
-------
the pixel intensity : int
"""
mask = masks[slice]
return get_pixel_val(mask, coordinate)
def get_pixel_val(image: np.array, coordinate: tuple) -> int:
"""
Parameters
----------
image : np.array
coordinate : tuple
Returns
-------
the pixel intensity : int
"""
try:
return image[coordinate[1], coordinate[0]]
except IndexError:
print(f'Out of bounds: {coordinate}')
return 0
def filter_clusters(locs: pd.DataFrame, nucl_mask: np.array, cluster_col: str) -> pd.DataFrame:
"""
Filters out clusters that don't overlap with nucl_mask.
Parameters
----------
locs : pd.DataFrame
nucl_mask : np.array
cluster_col : str
Returns
-------
data without outside nucleus locs : pd.DataFrame
"""
process_start = time.time()
out_locs = pd.DataFrame()
print('Filtering out clusters outside nucleus...')
unique_dbscan = len(locs[cluster_col].unique())
counter = 0
for dbscan, locs_group in locs.groupby(cluster_col):
min_x = int(locs_group['x'].min())
max_x = int(locs_group['x'].max())
min_y = int(locs_group['y'].min())
max_y = int(locs_group['y'].max())
top_left = get_pixel_val(nucl_mask, (min_x, min_y))
top_right = get_pixel_val(nucl_mask, (max_x, min_y))
bottom_left = get_pixel_val(nucl_mask, (min_x, max_y))
bottom_right = get_pixel_val(nucl_mask, (max_x, max_y))
if top_left > 0 or top_right > 0 or bottom_left > 0 or bottom_right > 0:
out_locs = pd.concat([out_locs, locs_group], ignore_index=True)
counter += 1
if counter % 1000 == 0 or counter == unique_dbscan:
elapsed_time = time.time() - process_start
print(f'DBSCAN processed: {counter}/{unique_dbscan},'
f'process time: {elapsed_time} [sec]')
print('Filtering done')
return out_locs
def decode_clusters(locs: pd.DataFrame, masks: list, cluster_col: str) -> pd.DataFrame:
"""
Returns decoded data.
Parameters
----------
locs : pd.DataFrame
masks : list
cluster_col : str
Returns
-------
decoded locs : pd.DataFrame
"""
process_start = time.time()
print('Decoding clusters...')
out_locs = pd.DataFrame()
unique_clusters = len(locs[cluster_col].unique())
counter = 0
for _, locs_group in locs.groupby(cluster_col):
locs_group['id'] = decode_ids(locs_group, masks)
out_locs = pd.concat([out_locs, locs_group], ignore_index=True)
counter += 1
if counter % 1000 == 0 or counter == unique_clusters:
print(f'DBSCAN decoded: {counter}/{unique_clusters},'
f'Process time: {time.time() - process_start} [sec]')
return out_locs
def decode_ids(cluster: pd.DataFrame, masks: list):
"""
Decodes a h/dbscaned cluster based on overlap scores.
Parameters
----------
cluster : pd.DataFrame
masks : list
Returns
-------
decoded : int or np.nan
"""
# Input form: a group of locs sharing with the same 'h/dbscan' id
mask_overlap = count_mask_overlap(cluster, masks)
half_total_locs = len(cluster) / 2
if mask_overlap.max() == 0: # Rejects if no overlap
return np.nan
elif mask_overlap.max() < half_total_locs: # Rejects if no more than 50% overlap
return np.nan
else:
max_index = [i for i, x in enumerate(mask_overlap) if x == max(mask_overlap)]
if len(max_index) == 1:
return max_index[0] # Assigns id with
else:
return -1
def count_mask_overlap(cluster: pd.DataFrame, masks: list) -> int:
"""
Counts the number of localizations overlapped with mask.
Parameters
----------
cluster : pd.DataFrame
masks : list
Returns
-------
number of locs overlapped with mask : int
"""
# Input form: locs which have the same 'dbscan' id
cluster = cluster[['x', 'y']].astype('uint32')
cluster['count'] = 1
len_masks = len(masks)
mask_overlap = np.empty((0, len_masks), int)
for key, selected in cluster.groupby(['x', 'y'], as_index=False):
out_row = []
for i in range(len_masks):
# divide by 255 as binary masks have either 0 or 255 (8-bit)
out_row.append(get_mask_val(masks, i, key) / 255 * len(selected))
mask_overlap = np.append(mask_overlap, np.array([out_row]), axis=0)
return mask_overlap.sum(axis=0)
if __name__ == '__main__':
main()