-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrnn_training_apm.py
228 lines (178 loc) · 7.53 KB
/
rnn_training_apm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
## Install required python package
!pip uninstall -y tensorflow-gpu
!pip install tensorflow
!pip install afs2-model
## Environment variable setting. Disable these when running task.
import os
## The APP variable from environment variable.
if 'model_para' not in os.environ:
os.environ['model_para'] = """{
"epoch": 100,
"LSTM_unit": 16,
"look_back": 12,
"model_name": "rnn_model.h5"
}"""
if 'sso_url' not in os.environ:
os.environ['sso_url'] = 'https://portal-sso.wise-paas.com/v2.0/auth/native'
## APM firehose information set by portal, and get from environment variable. To set the following code in notebook to test.
# os.environ['PAI_DATA_DIR'] = """{
# "type": "apm-firehose",
# "data": {
# "username": "@@@@@YourSsoApmUsername@@@@@",
# "password": "@@@@@YourSsoApmPassword@@@@@",
# "apmUrl": "https://api-apm-1-0-40-adviotsense-afs.wise-paas.com",
# "timeRange": [],
# "timeLast": {},
# "job_config": {},
# "resultProfile": "data",
# "parameterList": ["pressure", "temperature"],
# "machineIdList": [3]
# }
# }"""
###############TRAINING CODE###############
import requests
import pandas as pd
import requests.packages.urllib3
from datetime import datetime, timedelta
import numpy as np
import math, json, os
from keras.models import Sequential
from keras.layers import Dense, LSTM
from keras.layers.core import Dropout
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from afs import models
requests.packages.urllib3.disable_warnings()
global apmUrl
global sso_username, sso_password, sso_url
global resultProfile, feature_list, machineIdList
PAI_DATA_DIR = json.loads(os.getenv('PAI_DATA_DIR',{}))
apmUrl = PAI_DATA_DIR['data']['apmUrl']
sso_username = PAI_DATA_DIR['data']['username']
sso_password = PAI_DATA_DIR['data']['password']
resultProfile = PAI_DATA_DIR['data']['resultProfile']
feature_list = PAI_DATA_DIR['data']['parameterList']
machineIdList = PAI_DATA_DIR['data']['machineIdList']
def read_apm_data():
# Connection Information
sso_url = os.getenv('sso_url')
payload = dict()
payload['username'] = sso_username
payload['password'] = sso_password
# Get Token through SSO Login
resp_sso = requests.post(sso_url, json=payload, verify=False)
print(resp_sso.text)
header = dict()
header['content-type'] = 'application/json'
header['Authorization'] = 'Bearer ' + resp_sso.json()['accessToken']
# HIST_RAW_DATA API docs: https://portal-apmapidoc-acniotsense-apmdemo.wise-paas.com.cn/#api-Data-RGetHistRawData
APM_HIST = apmUrl + '/hist/raw/data'
now = datetime.now()
past = now - timedelta(days=30)
Query_to = now.strftime("%Y-%m-%dT%H:%M:%S.000Z")
Query_from = past.strftime("%Y-%m-%dT%H:%M:%S.000Z")
# Get node and feature to dataframe, and concat them.
dataframe_list = []
for apm_nodeid in machineIdList:
for feature in feature_list:
payload = dict()
payload['nodeId'] = apm_nodeid
payload['sensorType'] = 'monitor'
payload['sensorName'] = feature
payload['startTs'] = Query_from
payload['endTs'] = Query_to
resp_apm_raw = requests.get(APM_HIST,
params=payload,
headers=header,
verify=False)
df = pd.read_json(
str(json.dumps(resp_apm_raw.json()['value'])), orient='records')
df = df.set_index(
pd.DatetimeIndex(df['ts'])).sort_index(
ascending=True).drop(
columns='ts').rename(
columns={'v': feature})
dataframe_list.append(df)
feature_df = pd.concat(dataframe_list, axis=1, sort=False)
print('feature_df:', feature_df)
return feature_df[[feature_list[0]]]
def create_dataset(dataset, look_back):
dataX, dataY = [], []
# dataX is feature, dataY is label
for i in range(len(dataset)-look_back-1):
a = dataset[i:(i+look_back), 0]
dataX.append(a)
dataY.append(dataset[i+look_back, 0])
return np.array(dataX), np.array(dataY)
def load_dataset():
model_para = config()['model_para']
# load the dataset
dataframe = read_apm_data()
dataset = dataframe.values
dataset = dataset.astype('float32')
raw_data = dataset
# normalize the dataset from 0 to 1
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)
# split into train and test sets
train_size = int(len(dataset) * 0.8)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]
# reshape into X=t and Y=t+1
trainX, trainY = create_dataset(train, model_para['look_back'])
testX, testY = create_dataset(test, model_para['look_back'])
# reshape input to be [samples, time steps, features]
trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
return trainX, trainY, testX, testY, scaler
def create_rnn_model():
model_para = config()['model_para']
# create and fit the LSTM network
model = Sequential()
model.add(LSTM(model_para['LSTM_unit'], input_shape=(1, model_para['look_back'])))
model.add(Dense(units=128,activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
return model
def train_and_test():
model_para = config()['model_para']
trainX, trainY, testX, testY, scaler = load_dataset()
model = create_rnn_model()
model.fit(trainX, trainY, epochs=model_para['epoch'], batch_size=5, verbose=0)
model.summary()
# make predictions
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)
# invert predictions
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])
# calculate root mean squared error
trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))
print('Train RMSE: %.2f ' % (trainScore))
testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0]))
print('Test RMSE: %.2f ' % (testScore))
# colculate training accuracy
label = trainY[0]
predict = trainPredict[:,0]
# save and upload model
model.save(model_para['model_name'])
evaluation_result = {"TestRMSE": testScore,
"TrainRMSE": trainScore}
tags = {"machine": resultProfile}
afs_models = models()
afs_models.upload_model(model_path=model_para['model_name'], loss=trainScore,
tags=tags, extra_evaluation=evaluation_result,
model_repository_name=model_para['model_name'])
return evaluation_result
def config():
return {'model_para': json.loads(os.getenv('model_para', None))}
if __name__ == '__main__':
model_para = config()['model_para']
resp={}
results = train_and_test()
resp.update({'model_para': config()['model_para']})
resp.update({'results': results})
print(resp)