-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPlotting1.py
181 lines (155 loc) · 6.36 KB
/
Plotting1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import plotly as py
import pandas as pd
import numpy as np
from datetime import datetime
from datetime import time as dt_tm
from datetime import date as dt_date
import plotly.plotly as py
import plotly.tools as plotly_tools
import plotly.graph_objs as go
import os
import tempfile
os.environ['MPLCONFIGDIR'] = tempfile.mkdtemp()
from matplotlib.finance import quotes_historical_yahoo
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde
from IPython.display import HTML
y = []
ma = []
def moving_average(interval, window_size):
window = np.ones(int(window_size))/float(window_size)
return np.convolve(interval, window, 'same')
date1 = dt_date( 2014, 1, 1 )
date2 = dt_date( 2014, 12, 12 )
quotes = quotes_historical_yahoo('AAPL', date1, date2)
if len(quotes) == 0:
print "Couldn't connect to yahoo trading database"
else:
dates = [q[0] for q in quotes]
y = [q[1] for q in quotes]
for date in dates:
x.append(datetime.fromordinal(int(date))\
.strftime('%Y-%m-%d')) # Plotly timestamp format
ma = moving_average(y, 10)
# vvv clip first and last points of convolution
mov_avg = go.Scatter( x=x[5:-4], y=ma[5:-4], \
line=dict(width=2,color='red',opacity=0.5), name='Moving average' )
data = [xy_data, mov_avg]
py.iplot(data, filename='apple stock moving average')
first_plot_url = py.plot(data, filename='apple stock moving average', auto_open=False,)
print first_plot_url
tickers = ['AAPL', 'GE', 'IBM', 'KO', 'MSFT', 'PEP']
prices = []
for ticker in tickers:
quotes = quotes_historical_yahoo(ticker, date1, date2)
prices.append( [q[1] for q in quotes] )
df = pd.DataFrame( prices ).transpose()
df.columns = tickers
df.head()
fig = plotly_tools.get_subplots(rows=6, columns=6, print_grid=True, horizontal_spacing= 0.05, vertical_spacing= 0.05)
"""Kernel Density Estimation with Scipy"""
# From https://jakevdp.github.io/blog/2013/12/01/kernel-density-estimation/
# Note that scipy weights its bandwidth by the covariance of the
# input data. To make the results comparable to the other methods,
# we divide the bandwidth by the sample standard deviation here.
kde = gaussian_kde(x, bw_method=bandwidth / x.std(ddof=1), **kwargs)
return kde.evaluate(x_grid)
subplots = range(1,37)
sp_index = 0
data = []
for i in range(1,7):
x_ticker = df.columns[i-1]
for j in range(1,7):
y_ticker = df.columns[j-1]
if i==j:
x = df[x_ticker]
x_grid = np.linspace(x.min(), x.max(), 100)
sp = [ go.Histogram( x=x, histnorm='probability density' ), \
go.Scatter( x=x_grid, y=kde_scipy( x.as_matrix(), x_grid ), \
line=dict(width=2,color='red',opacity='0.5') ) ]
else:
sp = [ go.Scatter( x=df[x_ticker], y=df[y_ticker], mode='markers', marker=dict(size=3) ) ]
for ea in sp:
ea.update( name='{0} vs {1}'.format(x_ticker,y_ticker),\
xaxis='x{}'.format(subplots[sp_index]),\
yaxis='y{}'.format(subplots[sp_index])
)
sp_index+=1
data += sp
# Add x and y labels
left_index = 1
bottom_index = 1
for tk in tickers:
fig['layout']['xaxis{}'.format(left_index)].update( title=tk )
fig['layout']['yaxis{}'.format(bottom_index)].update( title=tk )
left_index=left_index+1
bottom_index=bottom_index+6
# Remove legend by updating 'layout' key
fig['layout'].update(showlegend=False,height=1000,width=1000, title='Major technology and CPG stock prices in 2014')
fig['data'] = data
py.iplot(fig, height=1000, width=1000, filename='Major technology and CPG stock prices in 2014 - scatter matrix')
second_plot_url = py.plot(fig, height=1000, width=1000, auto_open=False,\
filename='Major technology and CPG stock prices in 2014 - scatter matrix')
print second_plot_url
summary_table_1 = df.describe()
summary_table_1 = summary_table_1\
.to_html()\
.replace('<table border="1" class="dataframe">','<table class="table table-striped">') # use bootstrap styling
summary_table_2 = '''<table class="table table-striped">
<th>Ticker</th><th>Full name</th>
<tr>
<td>AAPL</td>
<td><a href="http://finance.yahoo.com/q?s=AAPL">Apple Inc</a></td>
</tr>
<tr>
<td>GE</td>
<td><a href="http://finance.yahoo.com/q?s=GE">General Electric Company</a></td>
</tr>
<tr>
<td>IBM</td>
<td><a href="http://finance.yahoo.com/q?s=IBM">International Business Machines Corp.</a></td>
</tr>
<tr>
<td>KO</td>
<td><a href="http://finance.yahoo.com/q?s=KO">The Coca-Cola Company</a></td>
</tr>
<tr>
<td>MSFT</td>
<td><a href="http://finance.yahoo.com/q?s=MSFT">Microsoft Corporation</a></td>
</tr>
<tr>
<td>PEP</td>
<td><a href="http://finance.yahoo.com/q?s=PEP">Pepsico, Inc.</a></td>
</tr>
</table>
'''
HTML(summary_table_2)
html_string = '''
<html>
<head>
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.1/css/bootstrap.min.css">
<style>body{ margin:0 100; background:whitesmoke; }</style>
</head>
<body>
<h1>2014 technology and CPG stock prices</h1>
<!-- *** Section 1 *** --->
<h2>Section 1: Apple Inc. (AAPL) stock in 2014</h2>
<iframe width="1000" height="550" frameborder="0" seamless="seamless" scrolling="no" \
src="''' + first_plot_url + '''.embed?width=800&height=550"></iframe>
<p>Apple stock price rose steadily through 2014.</p>
<!-- *** Section 2 *** --->
<h2>Section 2: AAPL compared to other 2014 stocks</h2>
<iframe width="1000" height="1000" frameborder="0" seamless="seamless" scrolling="no" \
src="''' + second_plot_url + '''.embed?width=1000&height=1000"></iframe>
<p>GE had the most predictable stock price in 2014. IBM had the highest mean stock price. \
The red lines are kernel density estimations of each stock price - the peak of each red lines \
corresponds to its mean stock price for 2014 on the x axis.</p>
<h3>Reference table: stock tickers</h3>
''' + summary_table_2 + '''
<h3>Summary table: 2014 stock statistics</h3>
''' + summary_table_1 + '''
</body>
</html>'''
f = open('/home/pi/testPlot.html','w')
f.write(html_string)
f.close()