-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp_chainlit.py
85 lines (70 loc) · 2.64 KB
/
app_chainlit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from langchain.prompts import PromptTemplate
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import CTransformers
from langchain.chains import RetrievalQA
import chainlit as cl
from src.prompt import *
from langchain_pinecone import PineconeVectorStore
PROMPT=PromptTemplate(template=prompt_template, input_variables=["context", "question"])
#Retrieval QA Chain
def retrieval_qa_chain(llm, PROMPT, knowledge):
qa_chain = RetrievalQA.from_chain_type(llm=llm,
chain_type="stuff",
retriever=knowledge.as_retriever(search_kwargs={'k': 2}),
# chain_type_qwargs = chain_type_kwargs
chain_type_kwargs={"prompt": PROMPT}
)
return qa_chain
#Loading the model
def load_llm():
# Load the locally downloaded model here
llm=CTransformers(
model="model/llama-2-7b-chat.ggmlv3.q4_0.bin",
model_type="llama",
config={'max_new_tokens':512, 'temperature':0.8})
return llm
#QA Model Function
def qa_bot():
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={'device': 'cpu'})
knowledge = PineconeVectorStore.from_existing_index(
index_name="medical-chatbot",
namespace="default",
embedding=embeddings
)
llm = load_llm()
qa_prompt = PROMPT
qa = retrieval_qa_chain(llm, qa_prompt, knowledge)
return qa
#output function
def final_result(query):
qa_result = qa_bot()
response = qa_result({'query': query})
return response
#chainlit code
@cl.on_chat_start
async def start():
chain = qa_bot()
msg = cl.Message(content="Starting the bot...")
await msg.send()
msg.content = "Hi, Welcome to Medical Bot. What is your query?"
await msg.update()
cl.user_session.set("chain", chain)
@cl.on_message
async def main(message: cl.Message):
chain = cl.user_session.get("chain")
if chain is None:
await cl.Message(content="Error: QA chain not initialized.").send()
return
cb = cl.AsyncLangchainCallbackHandler(
stream_final_answer=True, answer_prefix_tokens=["FINAL", "ANSWER"]
)
cb.answer_reached = True
res = await chain.acall(message.content, callbacks=[cb])
answer = res["result"]
# sources = res["source_documents"]
# if sources:
# answer += f"\nSources:" + str(sources)
# else:
# answer += "\nNo sources found"
await cl.Message(content=answer).send()