-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
59 lines (49 loc) · 2.41 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 28 10:45:41 2019
@author: Brian Robinson
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
class Autoencoder(nn.Module):
def __init__(self, num_logits):
super(Autoencoder, self).__init__()
self.n_logits = num_logits
# Encoder methods
self.conv1 = nn.Conv2d( 3, 6, kernel_size=5, padding=2)
self.conv2 = nn.Conv2d( 6, 8, kernel_size=7, padding=3)
self.conv3 = nn.Conv2d( 8, 12, kernel_size=5, padding=2)
self.conv4 = nn.Conv2d(12, 16, kernel_size=7, padding=3)
self.conv5 = nn.Conv2d(16, 18, kernel_size=5, padding=2)
self.fc1 = nn.Linear(9*16*18, 256)
self.fc2 = nn.Linear(256, self.n_logits)
# Decoder methods
self.fc3 = nn.Linear(self.n_logits, 256)
self.fc4 = nn.Linear(256, 9*16*18)
self.deconv1 = nn.ConvTranspose2d(18, 16, kernel_size=2, stride=2, output_padding=(0,0))
self.deconv2 = nn.ConvTranspose2d(16, 12, kernel_size=2, stride=2, output_padding=(0,0))
self.deconv3 = nn.ConvTranspose2d(12, 8, kernel_size=2, stride=2, output_padding=(0,0))
self.deconv4 = nn.ConvTranspose2d( 8, 6, kernel_size=2, stride=2, output_padding=(0,0))
self.deconv5 = nn.ConvTranspose2d( 6, 3, kernel_size=2, stride=2, output_padding=(0,0))
# Common methods
self.pool = nn.MaxPool2d(2,2)
def forward(self, x):
x = self.pool(F.leaky_relu(self.conv1(x), negative_slope=0.01))
x = self.pool(F.leaky_relu(self.conv2(x), negative_slope=0.01))
x = self.pool(F.leaky_relu(self.conv3(x), negative_slope=0.01))
x = self.pool(F.leaky_relu(self.conv4(x), negative_slope=0.01))
x = self.pool(F.leaky_relu(self.conv5(x), negative_slope=0.01))
x = x.view(-1, 9*16*18)
x = F.leaky_relu(self.fc1(x), negative_slope=0.01)
code = F.leaky_relu(self.fc2(x), negative_slope=0.01)
x = F.leaky_relu(self.fc3(code), negative_slope=0.01)
x = F.leaky_relu(self.fc4(x), negative_slope=0.01)
x = x.view(-1, 18, 16, 9)
x = F.leaky_relu(self.deconv1(x), negative_slope=0.01)
x = F.leaky_relu(self.deconv2(x), negative_slope=0.01)
x = F.leaky_relu(self.deconv3(x), negative_slope=0.01)
x = F.leaky_relu(self.deconv4(x), negative_slope=0.01)
img_out = torch.sigmoid(self.deconv5(x))
return code, img_out