-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
213 lines (156 loc) · 6.65 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Jul 4 11:53:15 2019
@author: Brian Robinson
"""
from __future__ import print_function, division
import os
import pandas as pd
from skimage import io, transform
import numpy as np
import torch
from torch.utils.data.sampler import SubsetRandomSampler
import torch.nn as nn
from torch.autograd import Variable
from torchvision import transforms
import fb_model as model
import datetime
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from matplotlib.image import imread
class EnvironDataset(torch.utils.data.Dataset):
def __init__(self, image_names, root_dir, transform=None):
"""
Args:
img_names (string): name of text file with image filenames
root_dir (string): directory with images and img_names
transform (callable, optional): Optional transform applied to image
"""
self.image_names = pd.read_csv(image_names, header=None)
self.root_dir = root_dir
self.transform = transform
def __len__(self):
return len(self.image_names)
def __getitem__(self, idx):
img_name = os.path.join(self.root_dir, self.image_names.iloc[idx,0])
image = io.imread(img_name)
if self.transform:
image = self.transform(image)
return image
def find_stats(img_path):
"""Find mean and standard deviation of image data set"""
images = os.listdir(img_path)
img = imread(os.path.join(img_path, images[0])).astype(np.float)
img_sq = np.square(img)
pix_count = img.shape[0]*img.shape[1]
for i in images[1:]:
img_add = imread(os.path.join(img_path, i)).astype(np.float)
assert img_add.shape == img.shape, "Image shape is inconsistent"
img_sq += np.square(img_add)
img += img_add
img_mean = np.sum(img, axis=(0,1))/(len(images)*pix_count)
img_mean_sq = np.sum(img_sq, axis=(0,1))/(len(images)*pix_count)
img_var = img_mean_sq - np.square(img_mean)
img_std = np.sqrt(img_var)
return tuple(img_mean), tuple(img_std)
def split_data(dataset, val_split, shuffle_dataset):
"""
Split data into training and validation sets
Args:
dataset (object): EnvironDataset object
val_split (float): proportion of data to hold out for validation
shuffle_dataset (Bool): whether to shuffle data before splitting
"""
dataset_size = dataset.__len__()
indices = list(range(dataset_size))
split = int(np.floor(val_split * dataset_size))
if shuffle_dataset:
np.random.shuffle(indices)
train_indices, valid_indices = indices[split:], indices[:split]
train_sampler = SubsetRandomSampler(train_indices)
valid_sampler = SubsetRandomSampler(valid_indices)
return train_sampler, valid_sampler
def load_data(dataset, train_sampler, valid_sampler, batch_size):
"""Load split datasets"""
train_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
sampler=train_sampler, num_workers=8)
validation_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
sampler=valid_sampler, num_workers=8)
return train_loader, validation_loader
class Rescale(object):
"""Rescale the image in a sample to a given size."""
def __init__(self, output_size):
assert isinstance(output_size, (int, tuple))
self.output_size = output_size
def __call__(self, image):
new_h, new_w = self.output_size
new_h, new_w = int(new_h), int(new_w)
img = transform.resize(image, (new_h, new_w))
img = img
return img
class ToTensor(object):
""" Convert image to C x H x W tensor """
def __call__(self, image):
image = image.transpose((2, 0, 1))
return torch.from_numpy(image)
def cae_loss_fcn(code, img_out, img_in, lamda=1e-4, device=torch.device('cuda')):
assert img_out.shape == img_in.shape, "img_out.shape : {} != img_in.shape : {}".format(img_out.shape, img_in.shape)
# First term in the loss function, for ensuring representational fidelity
criterion=nn.MSELoss()
loss1 = criterion(img_out, img_in)
# Second term in the loss function, for enforcing contraction of representation
code.backward(torch.ones(code.size()).to(device), retain_graph=True)
# Frobenius norm of Jacobian of code with respect to input image
loss2 = torch.sqrt(torch.sum(torch.pow(img_in.grad, 2)))
img_in.grad.data.zero_()
# Total loss, the sum of the two loss terms, with weight applied to second term
loss = loss1 + (lamda*loss2)
return loss
def cae_loss_fcn_2(model, img_in, img_out, h, lamda=1e-4):
assert img_out.shape == img_in.shape, "img_out.shape : {} != img_in.shape : {}".format(img_out.shape, img_in.shape)
criterion = nn.MSELoss()
loss1 = criterion(img_out, img_in)
W = model.module.fc2.weight.data
dh = h*(1-h)
w_sum = torch.sum(Variable(W)**2, dim=1)
w_sum = w_sum.unsqueeze(1)
loss2 = torch.sum(torch.mm(dh**2, w_sum), 0)
return loss1 + loss2.mul_(lamda)
def load_image(image_path, vres, hres):
composed = transforms.Compose([Rescale((vres,hres)), transforms.ToTensor()])
image = io.imread(image_path)
image = composed(image).float()
return image.cuda()
def save_model(saved_model, optimizer, running_loss_history, val_loss_history, model_path):
now = datetime.datetime.now()
PATH = os.path.join(model_path, str('AE_' + now.strftime("%Y-%m-%d-%H-%M")))
torch.save({
'model_state_dict' : saved_model.state_dict(),
'optimizer_state_dict' : optimizer.state_dict(),
'training_loss_history' : running_loss_history,
'validation_loss_history' : val_loss_history
}, PATH)
print('Model saved successfully')
return
def load_model(model_path, num_logits):
loaded_model = model.Autoencoder(num_logits)
if torch.cuda.device_count() > 1:
print("Loading model onto", torch.cuda.device_count(), "GPU's")
loaded_model = torch.nn.DataParallel(loaded_model)
checkpoint = torch.load(model_path)
loaded_model.load_state_dict(checkpoint['model_state_dict'])
loaded_model.cuda()
print('Model loaded successfully')
return loaded_model
def forward_image(model, image_path, output_path, vres, hres):
img_in = load_image(image_path, vres, hres)
_, img_out = model(img_in.view(-1,3,vres,hres))
img_out = img_out.cpu().detach().numpy()
img_out = np.squeeze(img_out)
img_out = np.transpose(img_out, (1,2,0))
fig=plt.figure()
plt.imshow(img_out)
fig.savefig(output_path)
return img_out