[2024-01-18]:This is the official PyTorch implementation of Foodv1 and Foodv2.
The code is based on detectron2 v0.3
conda create -n Food python=3.8 -y
conda activate Food
- Prepare datasets
You should download:
-
train and val set of COCO2017
-
trainval and test set of VOC2007、VOC2012
following the structure described below:
datasets/
coco/
VOC20{07,12}/
In coco:
coco/
annotations/
instances_{train,val}2017.json
person_keypoints_{train,val}2017.json
{train,val}2017/
In VOC20{07,12}:
VOC20{07,12}/
Annotations/
ImageSets/
Main/
trainval.txt
test.txt
JPEGImages/
Then we generate all datasets for FOOD:
bash prepare_food_voc_coco.sh
bash run_voc_coco_AR.sh
bash run_voc_AR.sh
If you find this repo useful, please consider citing our paper:
@inproceedings{foodv2,
title={HSIC-based Moving Weight Averaging for Few-Shot Open-Set Object Detection},
author={Binyi Su, Hua Zhang, and Zhong Zhou},
booktitle={Proceedings of the31st ACM International Conference on Multimedia (MM 23)},
page={5358--5369},
year={2023},
doi={https://doi.org/10.1145/3581783.3611850}
}
@ARTICLE{foodv1,
author={Binyi Su, Hua Zhang, Jingzhi Li, Zhong Zhou},
journal={IEEE Transactions on Image Processing},
title={Toward Generalized Few-Shot Open-Set Object Detection},
year={2024},
volume={33},
number={},
pages={1389-1402},
doi={10.1109/TIP.2024.3364495}}