Weiyan 07/20/2020
Check the IRIF of BRCA1 in FUS KO cells
Note:
- Samples: WT: GUS/U2OS, KO: GUS/Clone110, RE: FUS/Clone110;
- Antibodies: BRCA1(M, SC-6954), rH2AX(R,2577S,Cell Signaling);
- Foci were ideatified by CellProfiler;
- BRCA1 and rH2AX foci identification setting is 3:6.
library(ggbeeswarm)
## Loading required package: ggplot2
library(viridis)
## Loading required package: viridisLite
library(tidyverse)
## ── Attaching packages ────────────────────────────────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ tibble 3.0.3 ✓ dplyr 1.0.0
## ✓ tidyr 1.1.0 ✓ stringr 1.4.0
## ✓ readr 1.3.1 ✓ forcats 0.5.0
## ✓ purrr 0.3.4
## ── Conflicts ───────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(ggpubr)
library(export)
# R1
Nuclei_R1 <- read.csv("IRIF_BRCA1_07132020/analysis/raw/BRCA1_rH2AX_2Gy_Nuclei.csv",header = TRUE)
Image_R1 <- read.csv("IRIF_BRCA1_07132020/analysis/raw/BRCA1_rH2AX_2Gy_Image.csv",header = TRUE)
# R2
Nuclei_R2 <- read.csv("IRIF_BRCA1_07152020/analysis/raw/BRCA1_rH2AX_2Gy_Nuclei.csv",header = TRUE)
Image_R2 <- read.csv("IRIF_BRCA1_07152020/analysis/raw/BRCA1_rH2AX_2Gy_Image.csv",header = TRUE)
# R3
Nuclei_R3 <- read.csv("IRIF_BRCA1_07172020/analysis/raw/BRCA1_rH2AX_2Gy_Nuclei.csv",header = TRUE)
Image_R3 <- read.csv("IRIF_BRCA1_07172020/analysis/raw/BRCA1_rH2AX_2Gy_Image.csv",header = TRUE)
IRIF_foci_R1 <- Nuclei_R1 %>%
select(ImageNumber,ObjectNumber,Children_IRIF_BRCA1_Count,Children_IRIF_rH2AX_Count,Intensity_IntegratedIntensity_DAPI,Intensity_IntegratedIntensity_BRCA1,Mean_IRIF_BRCA1_Intensity_MeanIntensity_BRCA1,Mean_IRIF_rH2AX_Intensity_MeanIntensity_rH2AX)%>%
rename(BRCA1_Count=Children_IRIF_BRCA1_Count,rH2AX_Count=Children_IRIF_rH2AX_Count,Intensity_DAPI=Intensity_IntegratedIntensity_DAPI, Intensity_BRCA1=Intensity_IntegratedIntensity_BRCA1, MeanIntensity_BRCA1_foci=Mean_IRIF_BRCA1_Intensity_MeanIntensity_BRCA1, MeanIntensity_rH2AX_foci = Mean_IRIF_rH2AX_Intensity_MeanIntensity_rH2AX)%>%
replace(is.na(.), 0)
Image2_R1<- Image_R1%>%
select(ImageNumber, FileName_BRCA1_Image, Count_IRIF_BRCA1,Count_IRIF_rH2AX,Count_Nuclei)%>%
separate(FileName_BRCA1_Image,c("sample","A","B","X","treat"), sep = "-", remove = FALSE)%>%
select(-A,-B,-X)
## Warning: Expected 5 pieces. Additional pieces discarded in 72 rows [1, 2, 3, 4,
## 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...].
metadataR1<-Image2_R1%>%
select(ImageNumber,sample,treat)
fociR1<- IRIF_foci_R1%>%
left_join(metadataR1,by='ImageNumber')%>%
mutate(BRCA1_Count=as.numeric(BRCA1_Count), rH2AX_Count=as.numeric(rH2AX_Count))
fociR1$replicate <- "R1"
fociR1$treat<- factor(fociR1$treat, levels = c("mock","15min","2hr"))
IRIF_foci_R2 <- Nuclei_R2 %>%
select(ImageNumber,ObjectNumber,Children_IRIF_BRCA1_Count,Children_IRIF_rH2AX_Count,Intensity_IntegratedIntensity_DAPI,Intensity_IntegratedIntensity_BRCA1,Mean_IRIF_BRCA1_Intensity_MeanIntensity_BRCA1,Mean_IRIF_rH2AX_Intensity_MeanIntensity_rH2AX)%>%
rename(BRCA1_Count=Children_IRIF_BRCA1_Count,rH2AX_Count=Children_IRIF_rH2AX_Count,Intensity_DAPI=Intensity_IntegratedIntensity_DAPI, Intensity_BRCA1=Intensity_IntegratedIntensity_BRCA1, MeanIntensity_BRCA1_foci=Mean_IRIF_BRCA1_Intensity_MeanIntensity_BRCA1, MeanIntensity_rH2AX_foci = Mean_IRIF_rH2AX_Intensity_MeanIntensity_rH2AX)%>%
replace(is.na(.), 0)
Image2_R2<- Image_R2%>%
select(ImageNumber, FileName_BRCA1_Image, Count_IRIF_BRCA1,Count_IRIF_rH2AX,Count_Nuclei)%>%
separate(FileName_BRCA1_Image,c("sample","A","B","X","treat"), sep = "-", remove = FALSE)%>%
select(-A,-B,-X)
## Warning: Expected 5 pieces. Additional pieces discarded in 72 rows [1, 2, 3, 4,
## 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...].
metadataR2<-Image2_R2%>%
select(ImageNumber,sample,treat)
fociR2<- IRIF_foci_R2%>%
left_join(metadataR2,by='ImageNumber')%>%
mutate(BRCA1_Count=as.numeric(BRCA1_Count), rH2AX_Count=as.numeric(rH2AX_Count))
fociR2$replicate <- "R2"
fociR2$treat<- factor(fociR2$treat, levels = c("mock","15min","2hr"))
IRIF_foci_R3 <- Nuclei_R3 %>%
select(ImageNumber,ObjectNumber,Children_IRIF_BRCA1_Count,Children_IRIF_rH2AX_Count,Intensity_IntegratedIntensity_DAPI,Intensity_IntegratedIntensity_BRCA1,Mean_IRIF_BRCA1_Intensity_MeanIntensity_BRCA1,Mean_IRIF_rH2AX_Intensity_MeanIntensity_rH2AX)%>%
rename(BRCA1_Count=Children_IRIF_BRCA1_Count,rH2AX_Count=Children_IRIF_rH2AX_Count,Intensity_DAPI=Intensity_IntegratedIntensity_DAPI, Intensity_BRCA1=Intensity_IntegratedIntensity_BRCA1, MeanIntensity_BRCA1_foci=Mean_IRIF_BRCA1_Intensity_MeanIntensity_BRCA1, MeanIntensity_rH2AX_foci = Mean_IRIF_rH2AX_Intensity_MeanIntensity_rH2AX)%>%
replace(is.na(.), 0)
Image2_R3<- Image_R3%>%
select(ImageNumber, FileName_BRCA1_Image, Count_IRIF_BRCA1,Count_IRIF_rH2AX,Count_Nuclei)%>%
separate(FileName_BRCA1_Image,c("sample","A","B","X","treat"), sep = "-", remove = FALSE)%>%
select(-A,-B,-X)
## Warning: Expected 5 pieces. Additional pieces discarded in 72 rows [1, 2, 3, 4,
## 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...].
metadataR3<-Image2_R3%>%
select(ImageNumber,sample,treat)
fociR3<- IRIF_foci_R3%>%
left_join(metadataR3,by='ImageNumber')%>%
mutate(BRCA1_Count=as.numeric(BRCA1_Count), rH2AX_Count=as.numeric(rH2AX_Count))
fociR3$replicate <- "R3"
fociR3$treat<- factor(fociR3$treat, levels = c("mock","15min","2hr"))
fociAll <-bind_rows(fociR1,fociR2,fociR3)%>%
filter(BRCA1_Count<=50, rH2AX_Count <=100)
fociAll$treat<- factor(fociAll$treat, levels = c("mock","15min","2hr"))
fociAll$sample<- factor(fociAll$sample, levels = c("GUSU2OS","GUSClone110","FUSClone110"))
levels(fociAll$treat)
## [1] "mock" "15min" "2hr"
RA <- fociAll%>%
select(replicate,BRCA1_Count, treat, sample)%>%
group_by(sample, treat, replicate)%>%
summarise_each(list(median))
## Warning: `summarise_each_()` is deprecated as of dplyr 0.7.0.
## Please use `across()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
print(as.data.frame(RA)) ## case RA is a tibble.str(RA) or class(RA)
## sample treat replicate BRCA1_Count
## 1 GUSU2OS mock R1 2.0
## 2 GUSU2OS mock R2 2.0
## 3 GUSU2OS mock R3 9.0
## 4 GUSU2OS 15min R1 13.0
## 5 GUSU2OS 15min R2 7.0
## 6 GUSU2OS 15min R3 12.0
## 7 GUSU2OS 2hr R1 16.0
## 8 GUSU2OS 2hr R2 10.0
## 9 GUSU2OS 2hr R3 13.0
## 10 GUSClone110 mock R1 2.0
## 11 GUSClone110 mock R2 1.0
## 12 GUSClone110 mock R3 3.0
## 13 GUSClone110 15min R1 3.0
## 14 GUSClone110 15min R2 1.5
## 15 GUSClone110 15min R3 3.0
## 16 GUSClone110 2hr R1 12.0
## 17 GUSClone110 2hr R2 5.0
## 18 GUSClone110 2hr R3 11.0
## 19 FUSClone110 mock R1 7.0
## 20 FUSClone110 mock R2 2.0
## 21 FUSClone110 mock R3 7.0
## 22 FUSClone110 15min R1 11.0
## 23 FUSClone110 15min R2 11.0
## 24 FUSClone110 15min R3 16.0
## 25 FUSClone110 2hr R1 19.0
## 26 FUSClone110 2hr R2 9.0
## 27 FUSClone110 2hr R3 13.0
CellCounts <- fociAll%>%
count(sample,treat, replicate,name = "n_Cell")
CellCounts
## sample treat replicate n_Cell
## 1 GUSU2OS mock R1 178
## 2 GUSU2OS mock R2 174
## 3 GUSU2OS mock R3 218
## 4 GUSU2OS 15min R1 212
## 5 GUSU2OS 15min R2 286
## 6 GUSU2OS 15min R3 240
## 7 GUSU2OS 2hr R1 188
## 8 GUSU2OS 2hr R2 240
## 9 GUSU2OS 2hr R3 231
## 10 GUSClone110 mock R1 208
## 11 GUSClone110 mock R2 191
## 12 GUSClone110 mock R3 239
## 13 GUSClone110 15min R1 253
## 14 GUSClone110 15min R2 298
## 15 GUSClone110 15min R3 283
## 16 GUSClone110 2hr R1 248
## 17 GUSClone110 2hr R2 256
## 18 GUSClone110 2hr R3 280
## 19 FUSClone110 mock R1 183
## 20 FUSClone110 mock R2 158
## 21 FUSClone110 mock R3 208
## 22 FUSClone110 15min R1 211
## 23 FUSClone110 15min R2 235
## 24 FUSClone110 15min R3 251
## 25 FUSClone110 2hr R1 169
## 26 FUSClone110 2hr R2 237
## 27 FUSClone110 2hr R3 253
summary(CellCounts$n_Cell)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 158.0 199.5 235.0 227.0 252.0 298.0
ggdensity(fociAll,
x = "BRCA1_Count",
add = "median",
rug = TRUE,
color = "sample",
legend = "top",
facet.by = c("replicate","treat"),
ncol = 3,
palette = "aaas"
)
# graph2pdf(file="figures/DensityPlotBRCA1.pdf", width=12, aspectr=sqrt(2),font = "Arial",bg = "transparent")
my_comparison <- list(c("GUSClone110","GUSU2OS"), c("GUSClone110","FUSClone110"), c("FUSClone110","GUSU2OS"))
ggboxplot(fociAll,
x="sample",
y="BRCA1_Count",
color = "sample",
palette = "aaas",
facet.by = c("replicate", "treat"),
order = c("GUSU2OS","GUSClone110","FUSClone110"),
add = "jitter",
ylab = "BRCA1 Foci Counts",
xlab = ""
)+
stat_compare_means(comparisons = my_comparison,
method = "wilcox.test",
label = "p.format"
)+
stat_compare_means(method = "kruskal.test", # this step for mutiple groups comparison
label.y = 70)
# graph2pdf(file="figures/BoxPlotBRCA1.pdf", width=12, aspectr=sqrt(2),font = "Arial",bg = "transparent")
ggdensity(fociAll,
x = "rH2AX_Count",
add = "median",
rug = TRUE,
color = "sample",
legend = "top",
facet.by = c("replicate","treat"),
ncol = 3,
palette = "aaas"
)
# graph2pdf(file="figures/DensityPlotrH2AX.pdf", width=12, aspectr=sqrt(2),font = "Arial",bg = "transparent")
my_comparison <- list(c("GUSClone110","GUSU2OS"), c("GUSClone110","FUSClone110"), c("FUSClone110","GUSU2OS"))
ggboxplot(fociAll,
x="sample",
y="rH2AX_Count",
color = "sample",
palette = "aaas",
facet.by = c("replicate", "treat"),
order = c("GUSU2OS","GUSClone110","FUSClone110"),
add = "jitter",
ylab = "rH2AX Foci Counts",
xlab = ""
)+
stat_compare_means(comparisons = my_comparison, # this step for group comparison
method = "wilcox.test",
label = "p.format"
)+
stat_compare_means(method = "kruskal.test", # this step for mutiple groups comparison
label.y = 150)
# graph2pdf(file="figures/BoxPlotrH2AX.pdf", width=12, aspectr=sqrt(2),font = "Arial",bg = "transparent")
sessionInfo()
## R version 3.6.3 (2020-02-29)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Catalina 10.15.6
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] export_0.2.2.9001 ggpubr_0.4.0 forcats_0.5.0 stringr_1.4.0
## [5] dplyr_1.0.0 purrr_0.3.4 readr_1.3.1 tidyr_1.1.0
## [9] tibble_3.0.3 tidyverse_1.3.0 viridis_0.5.1 viridisLite_0.3.0
## [13] ggbeeswarm_0.6.0 ggplot2_3.3.2
##
## loaded via a namespace (and not attached):
## [1] fs_1.4.2 lubridate_1.7.9 webshot_0.5.2
## [4] httr_1.4.1 ggsci_2.9 tools_3.6.3
## [7] backports_1.1.8 R6_2.4.1 vipor_0.4.5
## [10] DBI_1.1.0 colorspace_1.4-1 manipulateWidget_0.10.1
## [13] withr_2.2.0 tidyselect_1.1.0 gridExtra_2.3
## [16] curl_4.3 compiler_3.6.3 cli_2.0.2
## [19] rvest_0.3.5 flextable_0.5.10 xml2_1.3.2
## [22] officer_0.3.12 labeling_0.3 scales_1.1.1
## [25] systemfonts_0.2.3 digest_0.6.25 foreign_0.8-75
## [28] rmarkdown_2.3 rio_0.5.16 base64enc_0.1-3
## [31] pkgconfig_2.0.3 htmltools_0.5.0 fastmap_1.0.1
## [34] dbplyr_1.4.4 rvg_0.2.5 htmlwidgets_1.5.1
## [37] rlang_0.4.7 readxl_1.3.1 rstudioapi_0.11
## [40] shiny_1.5.0 farver_2.0.3 generics_0.0.2
## [43] jsonlite_1.7.0 crosstalk_1.1.0.1 zip_2.0.4
## [46] car_3.0-8 magrittr_1.5 Rcpp_1.0.5
## [49] munsell_0.5.0 fansi_0.4.1 abind_1.4-5
## [52] gdtools_0.2.2 lifecycle_0.2.0 stringi_1.4.6
## [55] yaml_2.2.1 carData_3.0-4 grid_3.6.3
## [58] blob_1.2.1 promises_1.1.1 crayon_1.3.4
## [61] miniUI_0.1.1.1 haven_2.3.1 stargazer_5.2.2
## [64] hms_0.5.3 knitr_1.29 pillar_1.4.6
## [67] uuid_0.1-4 ggsignif_0.6.0 reprex_0.3.0
## [70] glue_1.4.1 evaluate_0.14 data.table_1.12.8
## [73] modelr_0.1.8 httpuv_1.5.4 vctrs_0.3.2
## [76] cellranger_1.1.0 gtable_0.3.0 assertthat_0.2.1
## [79] xfun_0.15 openxlsx_4.1.5 mime_0.9
## [82] xtable_1.8-4 broom_0.7.0 later_1.1.0.1
## [85] rstatix_0.6.0 beeswarm_0.2.3 rgl_0.100.54
## [88] ellipsis_0.3.1