-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathcli.py
708 lines (581 loc) · 22.5 KB
/
cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
"""bioimageio CLI
Note: Some docstrings use a hair space ' '
to place the added '(default: ...)' on a new line.
"""
import json
import shutil
import subprocess
import sys
from argparse import RawTextHelpFormatter
from difflib import SequenceMatcher
from functools import cached_property
from pathlib import Path
from pprint import pformat, pprint
from typing import (
Any,
Dict,
Iterable,
List,
Mapping,
Optional,
Sequence,
Set,
Tuple,
Type,
Union,
)
from loguru import logger
from pydantic import BaseModel, Field, model_validator
from pydantic_settings import (
BaseSettings,
CliPositionalArg,
CliSettingsSource,
CliSubCommand,
JsonConfigSettingsSource,
PydanticBaseSettingsSource,
SettingsConfigDict,
YamlConfigSettingsSource,
)
from ruyaml import YAML
from tqdm import tqdm
from typing_extensions import assert_never
from bioimageio.spec import AnyModelDescr, InvalidDescr, load_description
from bioimageio.spec._internal.io_basics import ZipPath
from bioimageio.spec._internal.types import NotEmpty
from bioimageio.spec.dataset import DatasetDescr
from bioimageio.spec.model import ModelDescr, v0_4, v0_5
from bioimageio.spec.notebook import NotebookDescr
from bioimageio.spec.utils import download, ensure_description_is_model
from .commands import (
WeightFormatArgAll,
WeightFormatArgAny,
package,
test,
validate_format,
)
from .common import MemberId, SampleId
from .digest_spec import get_member_ids, load_sample_for_model
from .io import load_dataset_stat, save_dataset_stat, save_sample
from .prediction import create_prediction_pipeline
from .proc_setup import (
DatasetMeasure,
Measure,
MeasureValue,
StatsCalculator,
get_required_dataset_measures,
)
from .sample import Sample
from .stat_measures import Stat
from .utils import VERSION
yaml = YAML(typ="safe")
class CmdBase(BaseModel, use_attribute_docstrings=True, cli_implicit_flags=True):
pass
class ArgMixin(BaseModel, use_attribute_docstrings=True, cli_implicit_flags=True):
pass
class WithSource(ArgMixin):
source: CliPositionalArg[str]
"""Url/path to a bioimageio.yaml/rdf.yaml file
or a bioimage.io resource identifier, e.g. 'affable-shark'"""
@cached_property
def descr(self):
return load_description(self.source)
@property
def descr_id(self) -> str:
"""a more user-friendly description id
(replacing legacy ids with their nicknames)
"""
if isinstance(self.descr, InvalidDescr):
return str(getattr(self.descr, "id", getattr(self.descr, "name")))
else:
return str(
(
(bio_config := self.descr.config.get("bioimageio", {}))
and isinstance(bio_config, dict)
and bio_config.get("nickname")
)
or self.descr.id
or self.descr.name
)
class ValidateFormatCmd(CmdBase, WithSource):
"""validate the meta data format of a bioimageio resource."""
def run(self):
sys.exit(validate_format(self.descr))
class TestCmd(CmdBase, WithSource):
"""Test a bioimageio resource (beyond meta data formatting)"""
weight_format: WeightFormatArgAll = "all"
"""The weight format to limit testing to.
(only relevant for model resources)"""
devices: Optional[Union[str, Sequence[str]]] = None
"""Device(s) to use for testing"""
decimal: int = 4
"""Precision for numerical comparisons"""
summary_path: Optional[Path] = None
"""Path to save validation summary as JSON file."""
def run(self):
sys.exit(
test(
self.descr,
weight_format=self.weight_format,
devices=self.devices,
decimal=self.decimal,
summary_path=self.summary_path,
)
)
class PackageCmd(CmdBase, WithSource):
"""save a resource's metadata with its associated files."""
path: CliPositionalArg[Path]
"""The path to write the (zipped) package to.
If it does not have a `.zip` suffix
this command will save the package as an unzipped folder instead."""
weight_format: WeightFormatArgAll = "all"
"""The weight format to include in the package (for model descriptions only)."""
def run(self):
if isinstance(self.descr, InvalidDescr):
self.descr.validation_summary.display()
raise ValueError("resource description is invalid")
sys.exit(
package(
self.descr,
self.path,
weight_format=self.weight_format,
)
)
def _get_stat(
model_descr: AnyModelDescr,
dataset: Iterable[Sample],
dataset_length: int,
stats_path: Path,
) -> Mapping[DatasetMeasure, MeasureValue]:
req_dataset_meas, _ = get_required_dataset_measures(model_descr)
if not req_dataset_meas:
return {}
req_dataset_meas, _ = get_required_dataset_measures(model_descr)
if stats_path.exists():
logger.info(f"loading precomputed dataset measures from {stats_path}")
stat = load_dataset_stat(stats_path)
for m in req_dataset_meas:
if m not in stat:
raise ValueError(f"Missing {m} in {stats_path}")
return stat
stats_calc = StatsCalculator(req_dataset_meas)
for sample in tqdm(
dataset, total=dataset_length, desc="precomputing dataset stats", unit="sample"
):
stats_calc.update(sample)
stat = stats_calc.finalize()
save_dataset_stat(stat, stats_path)
return stat
class PredictCmd(CmdBase, WithSource):
"""Run inference on your data with a bioimage.io model."""
inputs: NotEmpty[Sequence[Union[str, NotEmpty[Tuple[str, ...]]]]] = (
"{input_id}/001.tif",
)
"""Model input sample paths (for each input tensor)
The input paths are expected to have shape...
- (n_samples,) or (n_samples,1) for models expecting a single input tensor
- (n_samples,) containing the substring '{input_id}', or
- (n_samples, n_model_inputs) to provide each input tensor path explicitly.
All substrings that are replaced by metadata from the model description:
- '{model_id}'
- '{input_id}'
Example inputs to process sample 'a' and 'b'
for a model expecting a 'raw' and a 'mask' input tensor:
--inputs="[[\"a_raw.tif\",\"a_mask.tif\"],[\"b_raw.tif\",\"b_mask.tif\"]]"
(Note that JSON double quotes need to be escaped.)
Alternatively a `bioimageio-cli.yaml` (or `bioimageio-cli.json`) file
may provide the arguments, e.g.:
```yaml
inputs:
- [a_raw.tif, a_mask.tif]
- [b_raw.tif, b_mask.tif]
```
`.npy` and any file extension supported by imageio are supported.
Aavailable formats are listed at
https://imageio.readthedocs.io/en/stable/formats/index.html#all-formats.
Some formats have additional dependencies.
"""
outputs: Union[str, NotEmpty[Tuple[str, ...]]] = (
"outputs_{model_id}/{output_id}/{sample_id}.tif"
)
"""Model output path pattern (per output tensor)
All substrings that are replaced:
- '{model_id}' (from model description)
- '{output_id}' (from model description)
- '{sample_id}' (extracted from input paths)
"""
overwrite: bool = False
"""allow overwriting existing output files"""
blockwise: bool = False
"""process inputs blockwise"""
stats: Path = Path("dataset_statistics.json")
"""path to dataset statistics
(will be written if it does not exist,
but the model requires statistical dataset measures)
"""
preview: bool = False
"""preview which files would be processed
and what outputs would be generated."""
weight_format: WeightFormatArgAny = "any"
"""The weight format to use."""
example: bool = False
"""generate and run an example
1. downloads example model inputs
2. creates a `{model_id}_example` folder
3. writes input arguments to `{model_id}_example/bioimageio-cli.yaml`
4. executes a preview dry-run
5. executes prediction with example input
"""
def _example(self):
model_descr = ensure_description_is_model(self.descr)
input_ids = get_member_ids(model_descr.inputs)
example_inputs = (
model_descr.sample_inputs
if isinstance(model_descr, v0_4.ModelDescr)
else [ipt.sample_tensor or ipt.test_tensor for ipt in model_descr.inputs]
)
if not example_inputs:
raise ValueError(f"{self.descr_id} does not specify any example inputs.")
inputs001: List[str] = []
example_path = Path(f"{self.descr_id}_example")
example_path.mkdir(exist_ok=True)
for t, src in zip(input_ids, example_inputs):
local = download(src).path
dst = Path(f"{example_path}/{t}/001{''.join(local.suffixes)}")
dst.parent.mkdir(parents=True, exist_ok=True)
inputs001.append(dst.as_posix())
if isinstance(local, Path):
shutil.copy(local, dst)
elif isinstance(local, ZipPath):
_ = local.root.extract(local.at, path=dst)
else:
assert_never(local)
inputs = [tuple(inputs001)]
output_pattern = f"{example_path}/outputs/{{output_id}}/{{sample_id}}.tif"
bioimageio_cli_path = example_path / YAML_FILE
stats_file = "dataset_statistics.json"
stats = (example_path / stats_file).as_posix()
yaml.dump(
dict(
inputs=inputs,
outputs=output_pattern,
stats=stats_file,
blockwise=self.blockwise,
),
bioimageio_cli_path,
)
yaml_file_content = None
# escaped double quotes
inputs_json = json.dumps(inputs)
inputs_escaped = inputs_json.replace('"', r"\"")
source_escaped = self.source.replace('"', r"\"")
def get_example_command(preview: bool, escape: bool = False):
q: str = '"' if escape else ""
return [
"bioimageio",
"predict",
# --no-preview not supported for py=3.8
*(["--preview"] if preview else []),
"--overwrite",
*(["--blockwise"] if self.blockwise else []),
f"--stats={q}{stats}{q}",
f"--inputs={q}{inputs_escaped if escape else inputs_json}{q}",
f"--outputs={q}{output_pattern}{q}",
f"{q}{source_escaped if escape else self.source}{q}",
]
if Path(YAML_FILE).exists():
logger.info(
"temporarily removing '{}' to execute example prediction", YAML_FILE
)
yaml_file_content = Path(YAML_FILE).read_bytes()
Path(YAML_FILE).unlink()
try:
_ = subprocess.run(get_example_command(True), check=True)
_ = subprocess.run(get_example_command(False), check=True)
finally:
if yaml_file_content is not None:
_ = Path(YAML_FILE).write_bytes(yaml_file_content)
logger.debug("restored '{}'", YAML_FILE)
print(
"🎉 Sucessfully ran example prediction!\n"
+ "To predict the example input using the CLI example config file"
+ f" {example_path/YAML_FILE}, execute `bioimageio predict` from {example_path}:\n"
+ f"$ cd {str(example_path)}\n"
+ f'$ bioimageio predict "{source_escaped}"\n\n'
+ "Alternatively run the following command"
+ " in the current workind directory, not the example folder:\n$ "
+ " ".join(get_example_command(False, escape=True))
+ f"\n(note that a local '{JSON_FILE}' or '{YAML_FILE}' may interfere with this)"
)
def run(self):
if self.example:
return self._example()
model_descr = ensure_description_is_model(self.descr)
input_ids = get_member_ids(model_descr.inputs)
output_ids = get_member_ids(model_descr.outputs)
minimum_input_ids = tuple(
str(ipt.id) if isinstance(ipt, v0_5.InputTensorDescr) else str(ipt.name)
for ipt in model_descr.inputs
if not isinstance(ipt, v0_5.InputTensorDescr) or not ipt.optional
)
maximum_input_ids = tuple(
str(ipt.id) if isinstance(ipt, v0_5.InputTensorDescr) else str(ipt.name)
for ipt in model_descr.inputs
)
def expand_inputs(i: int, ipt: Union[str, Tuple[str, ...]]) -> Tuple[str, ...]:
if isinstance(ipt, str):
ipts = tuple(
ipt.format(model_id=self.descr_id, input_id=t) for t in input_ids
)
else:
ipts = tuple(
p.format(model_id=self.descr_id, input_id=t)
for t, p in zip(input_ids, ipt)
)
if len(set(ipts)) < len(ipts):
if len(minimum_input_ids) == len(maximum_input_ids):
n = len(minimum_input_ids)
else:
n = f"{len(minimum_input_ids)}-{len(maximum_input_ids)}"
raise ValueError(
f"[input sample #{i}] Include '{{input_id}}' in path pattern or explicitly specify {n} distinct input paths (got {ipt})"
)
if len(ipts) < len(minimum_input_ids):
raise ValueError(
f"[input sample #{i}] Expected at least {len(minimum_input_ids)} inputs {minimum_input_ids}, got {ipts}"
)
if len(ipts) > len(maximum_input_ids):
raise ValueError(
f"Expected at most {len(maximum_input_ids)} inputs {maximum_input_ids}, got {ipts}"
)
return ipts
inputs = [expand_inputs(i, ipt) for i, ipt in enumerate(self.inputs, start=1)]
sample_paths_in = [
{t: Path(p) for t, p in zip(input_ids, ipts)} for ipts in inputs
]
sample_ids = _get_sample_ids(sample_paths_in)
def expand_outputs():
if isinstance(self.outputs, str):
outputs = [
tuple(
Path(
self.outputs.format(
model_id=self.descr_id, output_id=t, sample_id=s
)
)
for t in output_ids
)
for s in sample_ids
]
else:
outputs = [
tuple(
Path(p.format(model_id=self.descr_id, output_id=t, sample_id=s))
for t, p in zip(output_ids, self.outputs)
)
for s in sample_ids
]
for i, out in enumerate(outputs, start=1):
if len(set(out)) < len(out):
raise ValueError(
f"[output sample #{i}] Include '{{output_id}}' in path pattern or explicitly specify {len(output_ids)} distinct output paths (got {out})"
)
if len(out) != len(output_ids):
raise ValueError(
f"[output sample #{i}] Expected {len(output_ids)} outputs {output_ids}, got {out}"
)
return outputs
outputs = expand_outputs()
sample_paths_out = [
{MemberId(t): Path(p) for t, p in zip(output_ids, out)} for out in outputs
]
if not self.overwrite:
for sample_paths in sample_paths_out:
for p in sample_paths.values():
if p.exists():
raise FileExistsError(
f"{p} already exists. use --overwrite to (re-)write outputs anyway."
)
if self.preview:
print("🛈 bioimageio prediction preview structure:")
pprint(
{
"{sample_id}": dict(
inputs={"{input_id}": "<input path>"},
outputs={"{output_id}": "<output path>"},
)
}
)
print("🔎 bioimageio prediction preview output:")
pprint(
{
s: dict(
inputs={t: p.as_posix() for t, p in sp_in.items()},
outputs={t: p.as_posix() for t, p in sp_out.items()},
)
for s, sp_in, sp_out in zip(
sample_ids, sample_paths_in, sample_paths_out
)
}
)
return
def input_dataset(stat: Stat):
for s, sp_in in zip(sample_ids, sample_paths_in):
yield load_sample_for_model(
model=model_descr,
paths=sp_in,
stat=stat,
sample_id=s,
)
stat: Dict[Measure, MeasureValue] = dict(
_get_stat(
model_descr, input_dataset({}), len(sample_ids), self.stats
).items()
)
pp = create_prediction_pipeline(
model_descr,
weight_format=None if self.weight_format == "any" else self.weight_format,
)
predict_method = (
pp.predict_sample_with_blocking
if self.blockwise
else pp.predict_sample_without_blocking
)
for sample_in, sp_out in tqdm(
zip(input_dataset(dict(stat)), sample_paths_out),
total=len(inputs),
desc=f"predict with {self.descr_id}",
unit="sample",
):
sample_out = predict_method(sample_in)
save_sample(sp_out, sample_out)
JSON_FILE = "bioimageio-cli.json"
YAML_FILE = "bioimageio-cli.yaml"
class Bioimageio(
BaseSettings,
cli_parse_args=True,
cli_prog_name="bioimageio",
cli_use_class_docs_for_groups=True,
cli_implicit_flags=True,
use_attribute_docstrings=True,
):
"""bioimageio - CLI for bioimage.io resources 🦒"""
model_config = SettingsConfigDict(
json_file=JSON_FILE,
yaml_file=YAML_FILE,
)
validate_format: CliSubCommand[ValidateFormatCmd] = Field(alias="validate-format")
"Check a resource's metadata format"
test: CliSubCommand[TestCmd]
"Test a bioimageio resource (beyond meta data formatting)"
package: CliSubCommand[PackageCmd]
"Package a resource"
predict: CliSubCommand[PredictCmd]
"Predict with a model resource"
@classmethod
def settings_customise_sources(
cls,
settings_cls: Type[BaseSettings],
init_settings: PydanticBaseSettingsSource,
env_settings: PydanticBaseSettingsSource,
dotenv_settings: PydanticBaseSettingsSource,
file_secret_settings: PydanticBaseSettingsSource,
) -> Tuple[PydanticBaseSettingsSource, ...]:
cli: CliSettingsSource[BaseSettings] = CliSettingsSource(
settings_cls,
cli_parse_args=True,
formatter_class=RawTextHelpFormatter,
)
sys_args = pformat(sys.argv)
logger.info("starting CLI with arguments:\n{}", sys_args)
return (
cli,
init_settings,
YamlConfigSettingsSource(settings_cls),
JsonConfigSettingsSource(settings_cls),
)
@model_validator(mode="before")
@classmethod
def _log(cls, data: Any):
logger.info(
"loaded CLI input:\n{}",
pformat({k: v for k, v in data.items() if v is not None}),
)
return data
def run(self):
logger.info(
"executing CLI command:\n{}",
pformat({k: v for k, v in self.model_dump().items() if v is not None}),
)
cmd = self.validate_format or self.test or self.package or self.predict
assert cmd is not None
cmd.run()
assert isinstance(Bioimageio.__doc__, str)
Bioimageio.__doc__ += f"""
library versions:
bioimageio.core {VERSION}
bioimageio.spec {VERSION}
spec format versions:
model RDF {ModelDescr.implemented_format_version}
dataset RDF {DatasetDescr.implemented_format_version}
notebook RDF {NotebookDescr.implemented_format_version}
"""
def _get_sample_ids(
input_paths: Sequence[Mapping[MemberId, Path]],
) -> Sequence[SampleId]:
"""Get sample ids for given input paths, based on the common path per sample.
Falls back to sample01, samle02, etc..."""
matcher = SequenceMatcher()
def get_common_seq(seqs: Sequence[Sequence[str]]) -> Sequence[str]:
"""extract a common sequence from multiple sequences
(order sensitive; strips whitespace and slashes)
"""
common = seqs[0]
for seq in seqs[1:]:
if not seq:
continue
matcher.set_seqs(common, seq)
i, _, size = matcher.find_longest_match()
common = common[i : i + size]
if isinstance(common, str):
common = common.strip().strip("/")
else:
common = [cs for c in common if (cs := c.strip().strip("/"))]
if not common:
raise ValueError(f"failed to find common sequence for {seqs}")
return common
def get_shorter_diff(seqs: Sequence[Sequence[str]]) -> List[Sequence[str]]:
"""get a shorter sequence whose entries are still unique
(order sensitive, not minimal sequence)
"""
min_seq_len = min(len(s) for s in seqs)
# cut from the start
for start in range(min_seq_len - 1, -1, -1):
shortened = [s[start:] for s in seqs]
if len(set(shortened)) == len(seqs):
min_seq_len -= start
break
else:
seen: Set[Sequence[str]] = set()
dupes = [s for s in seqs if s in seen or seen.add(s)]
raise ValueError(f"Found duplicate entries {dupes}")
# cut from the end
for end in range(min_seq_len - 1, 1, -1):
shortened = [s[:end] for s in shortened]
if len(set(shortened)) == len(seqs):
break
return shortened
full_tensor_ids = [
sorted(
p.resolve().with_suffix("").as_posix() for p in input_sample_paths.values()
)
for input_sample_paths in input_paths
]
try:
long_sample_ids = [get_common_seq(t) for t in full_tensor_ids]
sample_ids = get_shorter_diff(long_sample_ids)
except ValueError as e:
raise ValueError(f"failed to extract sample ids: {e}")
return sample_ids