@@ -135,7 +135,7 @@ def predict(self, *input_tensors: xr.DataArray) -> List[xr.DataArray]:
135
135
return self ._model .forward (* input_tensors )
136
136
137
137
def apply_preprocessing (self , sample : Sample , computed_measures : ComputedMeasures ) -> None :
138
- """apply preprocessing in-place"""
138
+ """apply preprocessing in-place, also updates given computed_measures """
139
139
self ._ipt_stats .update_with_sample (sample )
140
140
for mode , stats in self ._ipt_stats .compute_measures ().items ():
141
141
if mode not in computed_measures :
@@ -145,7 +145,7 @@ def apply_preprocessing(self, sample: Sample, computed_measures: ComputedMeasure
145
145
self ._preprocessing .apply (sample , computed_measures )
146
146
147
147
def apply_postprocessing (self , sample : Sample , computed_measures : ComputedMeasures ) -> None :
148
- """apply postprocessing in-place"""
148
+ """apply postprocessing in-place, also updates given computed_measures """
149
149
self ._out_stats .update_with_sample (sample )
150
150
for mode , stats in self ._out_stats .compute_measures ().items ():
151
151
if mode not in computed_measures :
@@ -155,7 +155,9 @@ def apply_postprocessing(self, sample: Sample, computed_measures: ComputedMeasur
155
155
self ._postprocessing .apply (sample , computed_measures )
156
156
157
157
def forward (self , * input_tensors : xr .DataArray ) -> List [xr .DataArray ]:
158
- """Apply preprocessing, run prediction and apply postprocessing."""
158
+ """Apply preprocessing, run prediction and apply postprocessing.
159
+ Note: The preprocessing might change input_tensors in-pace.
160
+ """
159
161
input_sample = dict (zip ([ipt .name for ipt in self .input_specs ], input_tensors ))
160
162
computed_measures = {}
161
163
self .apply_preprocessing (input_sample , computed_measures )
0 commit comments