@@ -21,15 +21,17 @@ def tid():
21
21
def test_scale_linear (tid : MemberId ):
22
22
from bioimageio .core .proc_ops import ScaleLinear
23
23
24
- offset = xr .DataArray ([1 , 2 , 42 ], dims = ("c" ))
25
- gain = xr .DataArray ([1 , 2 , 3 ], dims = ("c" ))
26
- data = xr .DataArray (np .arange (6 ).reshape ((1 , 2 , 3 )), dims = ("x" , "y" , "c " ))
24
+ offset = xr .DataArray ([1 , 2 , 42 ], dims = ("channel" , ))
25
+ gain = xr .DataArray ([1 , 2 , 3 ], dims = ("channel" , ))
26
+ data = xr .DataArray (np .arange (6 ).reshape ((1 , 2 , 3 )), dims = ("x" , "y" , "channel " ))
27
27
sample = Sample (members = {tid : Tensor .from_xarray (data )}, stat = {}, id = None )
28
28
29
29
op = ScaleLinear (input = tid , output = tid , offset = offset , gain = gain )
30
30
op (sample )
31
31
32
- expected = xr .DataArray (np .array ([[[1 , 4 , 48 ], [4 , 10 , 57 ]]]), dims = ("x" , "y" , "c" ))
32
+ expected = xr .DataArray (
33
+ np .array ([[[1 , 4 , 48 ], [4 , 10 , 57 ]]]), dims = ("x" , "y" , "channel" )
34
+ )
33
35
xr .testing .assert_allclose (expected , sample .members [tid ].data , rtol = 1e-5 , atol = 1e-7 )
34
36
35
37
@@ -84,10 +86,10 @@ def test_zero_mean_unit_variance_fixed(tid: MemberId):
84
86
op = FixedZeroMeanUnitVariance (
85
87
tid ,
86
88
tid ,
87
- mean = xr .DataArray ([3 , 4 , 5 ], dims = ("c" )),
88
- std = xr .DataArray ([2.44948974 , 2.44948974 , 2.44948974 ], dims = ("c" )),
89
+ mean = xr .DataArray ([3 , 4 , 5 ], dims = ("channel" , )),
90
+ std = xr .DataArray ([2.44948974 , 2.44948974 , 2.44948974 ], dims = ("channel" , )),
89
91
)
90
- data = xr .DataArray (np .arange (9 ).reshape ((1 , 3 , 3 )), dims = ("b" , "c " , "x" ))
92
+ data = xr .DataArray (np .arange (9 ).reshape ((1 , 3 , 3 )), dims = ("b" , "channel " , "x" ))
91
93
expected = xr .DataArray (
92
94
np .array (
93
95
[
@@ -124,7 +126,7 @@ def test_zero_mean_unit_variance_fixed2(tid: MemberId):
124
126
def test_zero_mean_unit_across_axes (tid : MemberId ):
125
127
from bioimageio .core .proc_ops import ZeroMeanUnitVariance
126
128
127
- data = xr .DataArray (np .arange (18 ).reshape ((2 , 3 , 3 )), dims = ("c " , "x" , "y" ))
129
+ data = xr .DataArray (np .arange (18 ).reshape ((2 , 3 , 3 )), dims = ("channel " , "x" , "y" ))
128
130
129
131
op = ZeroMeanUnitVariance (
130
132
tid ,
@@ -136,7 +138,8 @@ def test_zero_mean_unit_across_axes(tid: MemberId):
136
138
sample .stat = compute_measures (op .required_measures , [sample ])
137
139
138
140
expected = xr .concat (
139
- [(data [i : i + 1 ] - data [i ].mean ()) / data [i ].std () for i in range (2 )], dim = "c"
141
+ [(data [i : i + 1 ] - data [i ].mean ()) / data [i ].std () for i in range (2 )],
142
+ dim = "channel" ,
140
143
)
141
144
op (sample )
142
145
xr .testing .assert_allclose (expected , sample .members [tid ].data , rtol = 1e-5 , atol = 1e-7 )
@@ -146,7 +149,7 @@ def test_binarize(tid: MemberId):
146
149
from bioimageio .core .proc_ops import Binarize
147
150
148
151
op = Binarize (tid , tid , threshold = 14 )
149
- data = xr .DataArray (np .arange (30 ).reshape ((2 , 3 , 5 )), dims = ("x" , "y" , "c " ))
152
+ data = xr .DataArray (np .arange (30 ).reshape ((2 , 3 , 5 )), dims = ("x" , "y" , "channel " ))
150
153
sample = Sample (members = {tid : Tensor .from_xarray (data )}, stat = {}, id = None )
151
154
expected = xr .zeros_like (data )
152
155
expected [{"x" : slice (1 , None )}] = 1
@@ -158,7 +161,7 @@ def test_binarize2(tid: MemberId):
158
161
from bioimageio .core .proc_ops import Binarize
159
162
160
163
shape = (3 , 32 , 32 )
161
- axes = ("c " , "y" , "x" )
164
+ axes = ("channel " , "y" , "x" )
162
165
np_data = np .random .rand (* shape )
163
166
data = xr .DataArray (np_data , dims = axes )
164
167
@@ -188,7 +191,7 @@ def test_clip(tid: MemberId):
188
191
def test_combination_of_op_steps_with_dims_specified (tid : MemberId ):
189
192
from bioimageio .core .proc_ops import ZeroMeanUnitVariance
190
193
191
- data = xr .DataArray (np .arange (18 ).reshape ((2 , 3 , 3 )), dims = ("c " , "x" , "y" ))
194
+ data = xr .DataArray (np .arange (18 ).reshape ((2 , 3 , 3 )), dims = ("channel " , "x" , "y" ))
192
195
sample = Sample (members = {tid : Tensor .from_xarray (data )}, stat = {}, id = None )
193
196
op = ZeroMeanUnitVariance (
194
197
tid ,
@@ -239,7 +242,7 @@ def test_scale_mean_variance(tid: MemberId, axes: Optional[Tuple[AxisId, ...]]):
239
242
from bioimageio .core .proc_ops import ScaleMeanVariance
240
243
241
244
shape = (3 , 32 , 46 )
242
- ipt_axes = ("c " , "y" , "x" )
245
+ ipt_axes = ("channel " , "y" , "x" )
243
246
np_data = np .random .rand (* shape )
244
247
ipt_data = xr .DataArray (np_data , dims = ipt_axes )
245
248
ref_data = xr .DataArray ((np_data * 2 ) + 3 , dims = ipt_axes )
0 commit comments