-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathknn_probing.py
150 lines (133 loc) · 4.84 KB
/
knn_probing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import argparse
import logging
import os
import time
from sklearn.neighbors import KNeighborsClassifier
from utils.probing_utils import (
get_data_and_target,
get_eval_part_dict,
get_pretrained_barcodemamba,
get_resource_info,
)
from utils.ssm_dataset import get_probe_dataframe, get_tokenizer
from omegaconf import OmegaConf as o
logger = logging.getLogger(__name__)
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
try:
o.register_new_resolver("eval", eval)
o.register_new_resolver("div_up", lambda x, y: (x + y - 1) // y)
except Exception:
print("registers have been registered")
def knn_probe(args, target_level="genus_name"):
t_start = time.time()
timing_stats = {}
assert target_level in ["species_name", "genus_name"]
dir_path = args["dir_path"]
ckpt_path = args["ckpt"]
ckpt_path, config, model = get_pretrained_barcodemamba(dir_path, ckpt_path)
config.dataset.input_path = args['input_path']
logging.info(f"Pretrained model is loaded from {ckpt_path}")
logging.info(f"Config and model are loaded from {dir_path}")
representation_folder = "representation_knn"
tokenizer = get_tokenizer(
tokenizer_name=config.tokenizer.name, tokenizer_config=config.tokenizer
)
logging.info(f"tokenizer {config.tokenizer.name} loaded")
logging.info(
f"pretrain model has been successfully loaded after {time.time()-t_start} seconds"
)
model.cuda()
model.eval()
t_start_embed = time.time()
os.makedirs(representation_folder, exist_ok=True)
train_file = os.path.join(representation_folder, f"train_{target_level}.pkl")
test_file = os.path.join(representation_folder, f"test_{target_level}.pkl")
train = get_probe_dataframe(config.dataset.input_path, phase="knn", split="train")
test = get_probe_dataframe(config.dataset.input_path, phase="knn", split="test")
timing_stats["preamble"] = time.time() - t_start
X, y = get_data_and_target(
config, t_start, tokenizer, model, target_level, train_file, train
)
X_unseen, y_unseen = get_data_and_target(
config, t_start, tokenizer, model, target_level, test_file, test
)
timing_stats["embed"] = time.time() - t_start_embed
c = 0
for label in y_unseen:
if label not in y:
c += 1
logging.info(f"There are {c} genus that are not present during training")
get_resource_info(t_start_embed)
# kNN =====================================================================
logging.info("Computing Nearest Neighbors")
# Fit ---------------------------------------------------------------------
t_start_train = time.time()
clf = KNeighborsClassifier(n_neighbors=args["n_neighbors"], metric=args["metric"])
clf.fit(X, y)
timing_stats["train"] = time.time() - t_start_train
# Evaluate ----------------------------------------------------------------
t_start_test = time.time()
# Create results dictionary
results = {}
for partition_name, X_part, y_part in [
("Train", X, y),
("Unseen", X_unseen, y_unseen),
]:
res_part = get_eval_part_dict(clf, X_part, y_part)
results[partition_name] = res_part
logging.info(f"\n{partition_name} evaluation results:")
for k, v in res_part.items():
if k == "count":
logging.info(f" {k + ' ':.<21s}{v:7d}")
else:
logging.info(f" {k + ' ':.<24s} {v:6.2f} %")
acc = results["Unseen"]["accuracy"]
logging.info(f"accuracy: {acc}")
timing_stats["test"] = time.time() - t_start_test
# Save results -------------------------------------------------------------
get_resource_info(t_start)
timing_stats["overall"] = time.time() - t_start
logging.info(timing_stats)
def main(args):
working_folder = f'./probing_outputs/run_knn_{args["dir_path"].split("/")[-1]}'
os.makedirs(working_folder, exist_ok=True)
os.chdir(working_folder)
logging.basicConfig(filename=f"knn-probing-{args['metric']}.log", level=logging.INFO)
knn_probe(args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-d",
"--dir-path",
type=str,
help="The path to checkpoint and config",
)
parser.add_argument(
"-n",
"--n-neighbors",
type=int,
help="Number of neighbors",
default=1,
)
parser.add_argument(
"-m",
"--metric",
default="cosine",
type=str,
help="Distance metric to use for kNN. Default: %(default)s",
)
parser.add_argument(
"-c",
"--ckpt",
default=None,
type=str,
help="Which ckpt to use for knn probing",
)
parser.add_argument(
"--input-path",
default=None,
type=str,
help="Path to data",
)
args = vars(parser.parse_args())
main(args)