-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathknn_probing_baseline.py
156 lines (136 loc) · 4.98 KB
/
knn_probing_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import argparse
import logging
import os
import pickle
import numpy as np
import torch
from tqdm import tqdm
from ssm_baselines import get_ssm_hf_model_tokenizer
from utils.ssm_dataset import get_probe_dataframe
from sklearn.neighbors import KNeighborsClassifier
from utils.probing_utils import (
get_eval_part_dict,
)
from omegaconf import OmegaConf as o
from transformers.modeling_outputs import BaseModelOutputWithNoAttention
logger = logging.getLogger(__name__)
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
try:
o.register_new_resolver("eval", eval)
o.register_new_resolver("div_up", lambda x, y: (x + y - 1) // y)
except Exception:
pass
def get_data_and_target(tokenizer, model, target_level, pkl_file, csv_file):
if os.path.isfile(pkl_file):
with open(pkl_file, "rb") as f:
X, y = pickle.load(f)
targets = csv_file[target_level].to_list()
label_set = sorted(set(targets))
y = [label_set.index(t) for t in targets]
else:
X, y, _ = representations_from_df(csv_file, target_level, model, tokenizer)
pickle.dump((X, y), open(pkl_file, "wb"))
return X, y
def representations_from_df(df, target_level, model, tokenizer):
orders = df["order_name"].to_numpy()
_label_set, y = np.unique(df[target_level], return_inverse=True)
dna_embeddings = []
with torch.no_grad():
for barcode in tqdm(df["nucleotides"]):
x = tokenizer(barcode)["input_ids"]
x = torch.tensor(x, dtype=torch.int64)
x = x.unsqueeze(0).cuda()
x = model(x)
if isinstance(x, BaseModelOutputWithNoAttention):
x = x["last_hidden_state"]
x = x.mean(1)
dna_embeddings.append(x.cpu().numpy())
logging.info(f"There are {len(df)} points in the dataset")
latent = np.array(dna_embeddings)
latent = np.squeeze(latent, 1)
return latent, y, orders
def knn_probe(args, target_level="genus_name"):
model_name = args["model_name"]
checkpoint = args["checkpoint"]
assert target_level in ["species_name", "genus_name"]
model, tokenizer = get_ssm_hf_model_tokenizer(
model_name=model_name, checkpoint=checkpoint
)
representation_folder = "representation_knn"
logging.info("pretrain model has been successfully loaded")
model.cuda()
model.eval()
os.makedirs(representation_folder, exist_ok=True)
train_file = os.path.join(representation_folder, f"train_{target_level}.pkl")
test_file = os.path.join(representation_folder, f"test_{target_level}.pkl")
input_path = args['input_path']
train = get_probe_dataframe(input_path, phase="knn", split="train")
test = get_probe_dataframe(input_path, phase="knn", split="test")
X, y = get_data_and_target(tokenizer, model, target_level, train_file, train)
X_unseen, y_unseen = get_data_and_target(
tokenizer, model, target_level, test_file, test
)
c = 0
for label in y_unseen:
if label not in y:
c += 1
logging.info(f"There are {c} genus that are not present during training")
# kNN =====================================================================
logging.info("Computing Nearest Neighbors")
# Fit ---------------------------------------------------------------------
clf = KNeighborsClassifier(n_neighbors=args["n_neighbors"], metric=args["metric"])
clf.fit(X, y)
# Evaluate ----------------------------------------------------------------
# Create results dictionary
results = {}
for partition_name, X_part, y_part in [
("Train", X, y),
("Unseen", X_unseen, y_unseen),
]:
res_part = get_eval_part_dict(clf, X_part, y_part)
results[partition_name] = res_part
logging.info(f"\n{partition_name} evaluation results:")
for k, v in res_part.items():
if k == "count":
logging.info(f" {k + ' ':.<21s}{v:7d}")
else:
logging.info(f" {k + ' ':.<24s} {v:6.2f} %")
acc = results["Unseen"]["accuracy"]
logging.info(f"accuracy: {acc}")
def main(args):
checkpoint = args["checkpoint"]
working_folder = f"./baseline_probing_outputs_knn/run_{checkpoint}"
os.makedirs(working_folder, exist_ok=True)
os.chdir(working_folder)
logging.basicConfig(filename="knn-probing.log", level=logging.INFO)
knn_probe(args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model-name",
type=str,
)
parser.add_argument(
"--checkpoint",
type=str,
)
parser.add_argument(
"--input_path",
type=str,
)
parser.add_argument(
"-n",
"--n-neighbors",
type=int,
help="The path to checkpoint and config",
default=1,
)
parser.add_argument(
"-m",
"--metric",
default="cosine",
type=str,
help="Distance metric to use for kNN. Default: %(default)s",
)
args = vars(parser.parse_args())
main(args)