-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_probing_baseline.py
182 lines (153 loc) · 5.52 KB
/
linear_probing_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import argparse
import logging
import os
import pickle
import time
import numpy as np
import torch
from tqdm import tqdm
from ssm_baselines import get_ssm_hf_model_tokenizer
from utils.ssm_dataset import get_probe_dataframe
from torch.utils.data import TensorDataset, DataLoader
from omegaconf import OmegaConf as o
from transformers.modeling_outputs import BaseModelOutputWithNoAttention
logger = logging.getLogger(__name__)
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
try:
o.register_new_resolver("eval", eval)
o.register_new_resolver("div_up", lambda x, y: (x + y - 1) // y)
except Exception as e:
pass
def get_data_and_target(tokenizer, model, target_level, pkl_file, csv_file):
if os.path.isfile(pkl_file):
with open(pkl_file, "rb") as f:
X, y = pickle.load(f)
targets = csv_file[target_level].to_list()
label_set = sorted(set(targets))
y = [label_set.index(t) for t in targets]
else:
X, y, _ = representations_from_df(csv_file, target_level, model, tokenizer)
pickle.dump((X, y), open(pkl_file, "wb"))
return X, y
def representations_from_df(df, target_level, model, tokenizer):
orders = df["order_name"].to_numpy()
_label_set, y = np.unique(df[target_level], return_inverse=True)
dna_embeddings = []
with torch.no_grad():
for barcode in tqdm(df["nucleotides"]):
x = tokenizer(barcode)["input_ids"]
x = torch.tensor(x, dtype=torch.int64)
x = x.unsqueeze(0).cuda()
x = model(x)
if isinstance(x, BaseModelOutputWithNoAttention):
x = x["last_hidden_state"]
x = x.mean(1)
dna_embeddings.append(x.cpu().numpy())
logging.info(f"There are {len(df)} points in the dataset")
latent = np.array(dna_embeddings)
latent = np.squeeze(latent, 1)
return latent, y, orders
def linear_probe(
model_name,
checkpoint,
input_path='./data',
target_level="species_name",
learning_rate=0.01,
momentum=0.9,
weight_decay=1e-5,
):
assert target_level in ["species_name", "genus_name"]
start = time.time()
model, tokenizer = get_ssm_hf_model_tokenizer(
model_name=model_name, checkpoint=checkpoint
)
representation_folder = "representation_linear"
logging.info("tokenizer loaded")
logging.info(
f"pretrain model has been successfully loaded after {time.time()-start} seconds"
)
model.cuda()
model.eval()
os.makedirs(representation_folder, exist_ok=True)
train_file = os.path.join(representation_folder, f"train_{target_level}.pkl")
test_file = os.path.join(representation_folder, f"test_{target_level}.pkl")
train = get_probe_dataframe(input_path, phase="linear", split="train")
test = get_probe_dataframe(input_path, phase="linear", split="test")
X, y = get_data_and_target(tokenizer, model, target_level, train_file, train)
X_test, y_test = get_data_and_target(
tokenizer, model, target_level, test_file, test
)
mean = X.mean()
std = X.std()
X = (X - mean) / std
X_test = (X_test - mean) / std
X_train = torch.tensor(X).float()
X_test = torch.tensor(X_test).float()
y_train = torch.tensor(y)
y_test = torch.tensor(y_test)
train_loader = DataLoader(
TensorDataset(X_train, y_train), batch_size=1024, shuffle=True
)
test = torch.utils.data.TensorDataset(X_test, y_test)
# test_loader = DataLoader(test, batch_size=1024, shuffle=False, drop_last=False)
d_model = 256 if model_name == "hyenadna" or "ph" in checkpoint else 512
clf = torch.nn.Sequential(torch.nn.Linear(d_model, np.unique(y).shape[0]))
clf.cuda()
# Train the model
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(
clf.parameters(), lr=learning_rate, momentum=momentum, weight_decay=weight_decay
)
num_epochs = 200
for epoch in tqdm(range(num_epochs)):
for X_train, y_train in train_loader:
X_train = X_train.cuda()
y_train = y_train.cuda()
# Forward pass
y_pred = clf(X_train)
loss = criterion(y_pred, y_train)
# Backward pass and optimization
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Print the loss every 100 epochs
if (epoch + 1) % 10 == 0:
logging.info(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}")
# Evaluate the model
X_test = X_test.cuda()
y_test = y_test.cuda()
with torch.no_grad():
y_pred = clf(X_test)
_, predicted = torch.max(y_pred, dim=1)
accuracy = (predicted == y_test).float().mean()
logging.info(f"Test Accuracy: {accuracy.item():.4f}")
def main(args):
checkpoint = args["checkpoint"]
working_folder = f"./baseline_probing_outputs_linear/run_{checkpoint}"
os.makedirs(working_folder, exist_ok=True)
os.chdir(working_folder)
logging.basicConfig(filename="linear-probing.log", level=logging.INFO)
linear_probe(
model_name=args["model_name"],
checkpoint=checkpoint,
input_path=args['input_path'],
learning_rate=1,
momentum=0.95,
weight_decay=1e-10,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model-name",
type=str,
)
parser.add_argument(
"--checkpoint",
type=str,
)
parser.add_argument(
"--input_path",
type=str,
)
args = vars(parser.parse_args())
main(args)