-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
266 lines (238 loc) · 8.36 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
"""
Script for self-supervised pretraining/supervised finetuning BarcodeMamba, including train and evaluate.
"""
import os
from einops import rearrange
import hydra
import hydra.core.hydra_config
import lightning as pl
import torch
from torchmetrics import MetricCollection
from utils.barcode_mamba import BarcodeMamba
import torch.optim as optim
from utils.ssm_dataset import get_dataloader
from utils.train_utils import (
NumTokens,
Perplexity,
TimmCosineLRScheduler,
accuracy,
cross_entropy,
)
from omegaconf import OmegaConf as o
from lightning.pytorch.callbacks import ModelCheckpoint, EarlyStopping
import logging
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
try:
o.register_new_resolver("eval", eval)
o.register_new_resolver("div_up", lambda x, y: (x + y - 1) // y)
except Exception:
pass
class BarcodeMamba_lightning(pl.LightningModule):
def __init__(self, config):
super().__init__()
self.config = config
self.model = BarcodeMamba(**config.model, use_head=self.config.dataset.phase)
self.save_hyperparameters(config)
self.loss = cross_entropy
self.accuracy = accuracy
self.training_step_outputs = []
self.validation_step_outputs = []
self.test_step_outputs = []
if self.config.dataset.phase == "pretrain":
metric_collection = MetricCollection(
{"perplexity": Perplexity(), "num_tokens": NumTokens()}
)
self.train_metrics = metric_collection.clone(prefix="train/")
self.val_metrics = metric_collection.clone(prefix="val/")
self.test_metrics = metric_collection.clone(prefix="test/")
elif self.config.dataset.phase == "finetune":
self.validation_step_acc = []
self.test_step_acc = []
def forward(self, *args, **kwargs):
return self.model(*args, **kwargs)
def configure_optimizers(self):
optimizer = optim.AdamW(self.parameters(), **self.config.optimizer)
scheduler = {
"scheduler": TimmCosineLRScheduler(
**self.config.scheduler, optimizer=optimizer
),
"interval": self.config.train.interval,
"monitor": self.config.train.monitor,
"name": "trainer/lr",
}
return {"optimizer": optimizer, "lr_scheduler": scheduler}
def training_step(self, batch, batch_idx):
x, y, _ = batch
x = self(x)
x = rearrange(x, "... C -> (...) C")
y = rearrange(y, "... -> (...)")
loss = self.loss(x, y)
self.log("train/loss_step", loss, on_epoch=False, on_step=True, sync_dist=True)
self.training_step_outputs.append(loss)
if self.config.dataset.phase == "pretrain":
self.train_metrics(x, y, loss=loss)
self.log_dict(
self.train_metrics,
on_step=True,
on_epoch=True,
# prog_bar=True,
sync_dist=True,
)
return loss
def on_train_epoch_end(self):
loss_epoch = torch.stack(self.training_step_outputs).mean()
self.log("train/loss_epoch", loss_epoch, sync_dist=True)
self.training_step_outputs.clear()
def validation_step(self, batch, batch_idx):
x, y, _ = batch
x = self(x)
x = rearrange(x, "... C -> (...) C")
y = rearrange(y, "... -> (...)")
loss = self.loss(x, y)
self.log(
"val/loss_step",
loss,
on_epoch=False,
on_step=True,
sync_dist=True,
)
self.validation_step_outputs.append(loss)
if self.config.dataset.phase == "pretrain":
self.val_metrics(x, y, loss=loss)
self.log_dict(
self.val_metrics,
on_step=True,
on_epoch=True,
# prog_bar=True,
sync_dist=True,
)
elif self.config.dataset.phase == "finetune":
acc = self.accuracy(x, y)
self.log(
"val/accuracy_step",
acc,
on_epoch=False,
on_step=True,
sync_dist=True,
)
self.validation_step_acc.append(acc)
return loss
def on_validation_epoch_end(self):
loss_epoch = torch.stack(self.validation_step_outputs).mean()
self.log(
"val/loss_epoch",
loss_epoch,
sync_dist=True,
)
self.validation_step_outputs.clear()
if self.config.dataset.phase == "finetune":
acc_epoch = torch.stack(self.validation_step_acc).mean()
self.log(
"val/acc_epoch",
acc_epoch,
sync_dist=True,
)
self.validation_step_acc.clear()
def test_step(self, batch, batch_idx):
x, y, _ = batch
x = self(x)
x = rearrange(x, "... C -> (...) C")
y = rearrange(y, "... -> (...)")
loss = self.loss(x, y)
self.log(
"test/loss_step",
loss,
on_epoch=False,
on_step=True,
sync_dist=True,
)
self.test_step_outputs.append(loss)
if self.config.dataset.phase == "pretrain":
self.test_metrics(x, y, loss=loss)
self.log_dict(
self.test_metrics,
on_step=True,
on_epoch=True,
# prog_bar=True,
sync_dist=True,
)
elif self.config.dataset.phase == "finetune":
acc = self.accuracy(x, y)
self.log(
"test/accuracy_step",
acc,
on_epoch=False,
on_step=True,
sync_dist=True,
prog_bar=True,
)
self.test_step_acc.append(acc)
return loss
def on_test_epoch_end(self):
loss_epoch = torch.stack(self.test_step_outputs).mean()
self.log(
"test/loss_epoch",
loss_epoch,
sync_dist=True,
)
self.test_step_outputs.clear()
if self.config.dataset.phase == "finetune":
acc_epoch = torch.stack(self.test_step_acc).mean()
self.log(
"test/acc_epoch",
acc_epoch,
sync_dist=True,
)
self.test_step_acc.clear()
def train_dataloader(self):
return get_dataloader(config=self.config, phase="train")
def val_dataloader(self):
return get_dataloader(config=self.config, phase="val")
def test_dataloader(self):
return get_dataloader(config=self.config, phase="test")
def train(cfg: o):
if cfg.train.seed is not None:
pl.seed_everything(cfg.train.seed, workers=True)
if cfg.train.logger == "wandb":
from lightning.pytorch.loggers import WandbLogger
logger = WandbLogger(project="barcode-mamba", name=cfg.train.run_name)
else:
from lightning.pytorch.loggers import TensorBoardLogger
logger = TensorBoardLogger("./")
trainer = pl.Trainer(
**cfg.trainer,
# enable_progress_bar=False,
logger=logger,
callbacks=[
ModelCheckpoint(**cfg.model_checkpoint),
EarlyStopping(
monitor=cfg.train.monitor,
patience=3,
verbose=True,
mode=cfg.train.mode,
),
],
)
lightning_model = BarcodeMamba_lightning(cfg)
if cfg.train.get("pretrained_model_path", None) is not None:
lightning_model.load_state_dict(
torch.load(cfg.train.pretrained_model_path)["state_dict"],
strict=cfg.train.pretrained_model_strict_load,
)
logging.info(f"loaded pretrained_model_path: {cfg.train.pretrained_model_path}")
if cfg.train.validate_at_start:
print("Running validation before training")
trainer.validate(lightning_model)
if cfg.train.ckpt is not None:
trainer.fit(lightning_model, ckpt_path=cfg.train.ckpt)
else:
trainer.fit(lightning_model)
if cfg.train.test:
trainer.test(lightning_model)
@hydra.main(version_base=None, config_path="./configs", config_name="config")
def main(config: o):
hydra_output_path = hydra.core.hydra_config.HydraConfig.get().runtime.output_dir
os.chdir(hydra_output_path)
train(config)
if __name__ == "__main__":
main()