-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpopulationModel.py
79 lines (69 loc) · 3.39 KB
/
populationModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import random
import mesa
from mesa.space import NetworkGrid
from mesa.time import RandomActivationByType
import networkx as nx
from greenAgent import greenAgent
from redAgent import redAgent
from blueAgent import blueAgent
from greyAgent import greyAgent
class populationModel(mesa.Model):
def __init__(self, N, P, num_grey, percent_grey_bad, uncertainty_interval, percent_green_voters, red_is_human, blue_is_human, blue_energy, amount_turns):
self.num_agents = N
self.edgeProbability = P
self.uncertainty_interval = uncertainty_interval
# Create the graph. We will use nx's Erdos-Renyi graph to represent a random graph of `N` nodes with `P` probability of an edge between any two nodes.
self.graph = nx.erdos_renyi_graph(self.num_agents, self.edgeProbability)
# Assign a random weight from 1-10 to each edge
for (u, v) in self.graph.edges():
self.graph.edges[u,v]['weight'] = random.randint(1,10)
# Feed graph into Mesa
self.grid = NetworkGrid(self.graph)
# Schedule that activates agents randomly by type (green, red, blue...)
self.schedule = RandomActivationByType(self)
# Fill out the graph with agents and add them to the schedule
num_green = self.num_agents - num_grey - 1 - 1 # -1 for red, -1 for blue
greenCount = 0
greyCount = 0
for i, node in enumerate(self.graph.nodes()):
if i == 0:
# First agent is red
a = redAgent(i, self, red_is_human, -1)
elif i == 1:
# Second agent is blue
a = blueAgent(i, self, blue_is_human, -2, blue_energy)
elif i < num_grey + 2:
# Grey agents up to amount specified in num_grey, with percent_grey_bad of them being bad
greyCount += 1
isGood = False if greyCount < num_grey * percent_grey_bad else True
a = greyAgent(i, self, -3, False, isGood)
else:
# Green agents for the rest of the graph, with percent_green_voters of them being voters (i.e. opinion = 1)
greenCount += 1
opinion = 1 if greenCount < num_green * percent_green_voters else 0
a = greenAgent(i, self, self.uncertainty_interval, opinion)
# Add node to graph and schedule
self.schedule.add(a)
self.grid.place_agent(a, node)
# Stepping by type handled by user (right now in populationModelVis.py)
def stepAgent(self, agentString):
agentType = self.get_agentType_from_agentString(agentString)
self.schedule.step_type(agentType)
def get_agentType_from_agentString(self, agentString):
if agentString == "green":
return greenAgent
elif agentString == "red":
return redAgent
elif agentString == "blue":
return blueAgent
elif agentString == "grey":
return greyAgent
else:
raise Exception("Invalid agentString")
# Utility functions
def get_nodes_by_type(self, agentString, randomize=False):
agentType = self.get_agentType_from_agentString(agentString)
agent_keys: list[int] = list(self.schedule.agents_by_type[agentType].keys())
if randomize:
random.shuffle(agent_keys)
return [self.schedule.agents_by_type[agentType][agent_key] for agent_key in agent_keys]