You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Merge bitcoin/bitcoin#27080: Wallet: Zero out wallet master key upon locking so it doesn't persist in memory
3a11adc Zero out wallet master key upon lock (John Moffett)
Pull request description:
When an encrypted wallet is locked (for instance via the RPC `walletlock`), the documentation indicates that the key is removed from memory:
https://github.com/bitcoin/bitcoin/blob/b92d609fb25637ccda000e182da854d4b762eee9/src/wallet/rpc/encrypt.cpp#L157-L158
However, the vector (a `std::vector<unsigned char, secure_allocator<unsigned char>>`) is merely _cleared_. As it is a member variable, it also stays in scope as long as the wallet is loaded, preventing the secure allocator from deallocating. This allows the key to persist indefinitely in memory. I confirmed this behavior on my macOS machine by using an open-source third party memory inspector ("Bit Slicer"). I was able to find my wallet's master key in Bit Slicer after unlocking and re-locking my encrypted wallet. I then confirmed the key data was at the address in LLDB.
This PR manually fills the bytes with zeroes before calling `clear()` by using our `memory_cleanse` function, which is designed to prevent the compiler from optimizing it away. I confirmed that it does remove the data from memory on my machine upon locking.
Note: An alternative approach could be to call `vMasterKey.shrink_to_fit()` after the `clear()`, which would trigger the secure allocator's deallocation. However, `shrink_to_fit()` is not _guaranteed_ to actually change the vector's capacity, so I think it's unwise to rely on it.
## Edit: A little more clarity on why this is an improvement.
Since `mlock`ed memory is guaranteed not to be swapped to disk and our threat model doesn't consider a super-user monitoring the memory in realtime, why is this an improvement? Most importantly, consider hibernation. Even `mlock`ed memory may get written to disk. From the `mlock` [manpage](https://man7.org/linux/man-pages/man2/mlock.2.html):
> (But be aware that the suspend mode on laptops and some desktop computers will save a copy of the system's RAM to disk, regardless of memory locks.)
As far as I can tell, this is true of [Windows](https://web.archive.org/web/20190127110059/https://blogs.msdn.microsoft.com/oldnewthing/20140207-00/?p=1833#:~:text=%5BThere%20does%20not%20appear%20to%20be%20any%20guarantee%20that%20the%20memory%20won%27t%20be%20written%20to%20disk%20while%20locked.%20As%20you%20noted%2C%20the%20machine%20may%20be%20hibernated%2C%20or%20it%20may%20be%20running%20in%20a%20VM%20that%20gets%20snapshotted.%20%2DRaymond%5D) and macOS as well.
Therefore, a user with a strong OS password and a strong wallet passphrase could still have their keys stolen if a thief takes their (hibernated) machine and reads the permanent storage.
ACKs for top commit:
S3RK:
Code review ACK 3a11adc
achow101:
ACK 3a11adc
Tree-SHA512: c4e3dab452ad051da74855a13aa711892c9b34c43cc43a45a3b1688ab044e75d715b42843c229219761913b4861abccbcc8d5cb6ac54957d74f6e357f04e8730
0 commit comments