|
| 1 | +# Load Packages |
| 2 | +library(EBImage) |
| 3 | +library(keras) |
| 4 | + |
| 5 | +# Read images |
| 6 | +setwd('---') |
| 7 | +pics <- c('p1.jpg', 'p2.jpg', 'p3.jpg', 'p4.jpg', 'p5.jpg', 'p6.jpg', |
| 8 | + 'c1.jpg', 'c2.jpg', 'c3.jpg', 'c4.jpg', 'c5.jpg', 'c6.jpg') |
| 9 | +mypic <- list() |
| 10 | +for (i in 1:12) {mypic[[i]] <- readImage(pics[i])} |
| 11 | + |
| 12 | +# Explore |
| 13 | +print(mypic[[1]]) |
| 14 | +display(mypic[[8]]) |
| 15 | +summary(mypic[[1]]) |
| 16 | +hist(mypic[[2]]) |
| 17 | +str(mypic) |
| 18 | + |
| 19 | +# Resize |
| 20 | +for (i in 1:12) {mypic[[i]] <- resize(mypic[[i]], ---, ---)} |
| 21 | + |
| 22 | +# Reshape |
| 23 | +for (i in 1:12) {mypic[[i]] <- array_reshape(mypic[[i]], c(---, ---,---))} |
| 24 | + |
| 25 | +# Row Bind |
| 26 | +trainx <- NULL |
| 27 | +for (i in 7:11) {trainx <- rbind(trainx, mypic[[i]])} |
| 28 | +str(trainx) |
| 29 | +testx <- ---(mypic[[6]], mypic[[12]]) |
| 30 | +trainy <- c(0,0,0,0,0,1,1,1,1,1 ) |
| 31 | +testy <- c(---, ---) |
| 32 | + |
| 33 | +# One Hot Encoding |
| 34 | +trainLabels <- ---(trainy) |
| 35 | +testLabels <- ---(testy) |
| 36 | + |
| 37 | +# Model |
| 38 | +model <- keras_model_sequential() |
| 39 | +model %>% |
| 40 | + layer_dense(units = 256, activation = ---, input_shape = c(2352)) %>% |
| 41 | + layer_dense(units = 128, activation = 'relu') %>% |
| 42 | + layer_dense(units = 2, activation = ---) |
| 43 | +summary(model) |
| 44 | + |
| 45 | +# Compile |
| 46 | +model %>% |
| 47 | + compile(loss = ---, |
| 48 | + optimizer = optimizer_rmsprop(), |
| 49 | + metrics = c('accuracy')) |
| 50 | + |
| 51 | +# Fit Model |
| 52 | +history <- model %>% |
| 53 | + fit(trainx, |
| 54 | + ---, |
| 55 | + epochs = 30, |
| 56 | + batch_size = 32, |
| 57 | + validation_split = 0.2) |
| 58 | + |
| 59 | +# Evaluation & Prediction - train data |
| 60 | +model %>% evaluate(---, ---) |
| 61 | +pred <- model %>% predict_classes(trainx) |
| 62 | +table(Predicted = pred, Actual = trainy) |
| 63 | +prob <- model %>% predict_proba(trainx) |
| 64 | +cbind(prob, Prected = pred, Actual= trainy) |
0 commit comments