-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathipm_paper.v
243 lines (211 loc) · 8.66 KB
/
ipm_paper.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
(** This file contains the examples from the paper:
Interactive Proofs in Higher-Order Concurrent Separation Logic
Robbert Krebbers, Amin Timany and Lars Birkedal
POPL 2017 *)
From iris.proofmode Require Import tactics.
From iris.base_logic Require Import base_logic.
From iris.deprecated.program_logic Require Import hoare.
From iris.heap_lang Require Import proofmode notation.
From iris.prelude Require Import options.
Unset Mangle Names.
(** The proofs from Section 3.1 *)
Section demo.
Context {M : ucmra}.
Notation iProp := (uPred M).
(* The version in Coq *)
Lemma and_exist A (P R: Prop) (Ψ: A → Prop) :
P ∧ (∃ a, Ψ a) ∧ R → ∃ a, P ∧ Ψ a.
Proof.
intros [HP [HΨ HR]].
destruct HΨ as [x HΨ].
exists x.
split.
- assumption.
- assumption.
Qed.
(* The version in IPM *)
Check "sep_exist".
Lemma sep_exist A (P R: iProp) (Ψ: A → iProp) :
P ∗ (∃ a, Ψ a) ∗ R ⊢ ∃ a, Ψ a ∗ P.
Proof.
iIntros "[HP [HΨ HR]]".
iDestruct "HΨ" as (x) "HΨ".
iExists x. Show.
iSplitL "HΨ".
- Show. iAssumption.
- Show. iAssumption.
Qed.
(* The short version in IPM, as in the paper *)
Check "sep_exist_short".
Lemma sep_exist_short A (P R: iProp) (Ψ: A → iProp) :
P ∗ (∃ a, Ψ a) ∗ R ⊢ ∃ a, Ψ a ∗ P.
Proof. iIntros "[HP [HΨ HR]]". Show. iFrame "HP". iAssumption. Qed.
(* An even shorter version in IPM, using the frame introduction pattern `$` *)
Lemma sep_exist_shorter A (P R: iProp) (Ψ: A → iProp) :
P ∗ (∃ a, Ψ a) ∗ R ⊢ ∃ a, Ψ a ∗ P.
Proof. by iIntros "[$ [??]]". Qed.
End demo.
(** The proofs from Section 3.2 *)
(** In the Iris development we often write specifications directly using weakest
preconditions, in sort of `CPS` style, so that they can be applied easier when
proving client code. A version of [list_reverse] in that style can be found in
the file [theories/tests/list_reverse.v]. *)
Section list_reverse.
Context `{!heapGS Σ}.
Notation iProp := (iProp Σ).
Implicit Types l : loc.
Fixpoint is_list (hd : val) (xs : list val) : iProp :=
match xs with
| [] => ⌜hd = NONEV⌝
| x :: xs => ∃ l hd', ⌜hd = SOMEV #l⌝ ∗ l ↦ (x,hd') ∗ is_list hd' xs
end%I.
Definition rev : val :=
rec: "rev" "hd" "acc" :=
match: "hd" with
NONE => "acc"
| SOME "l" =>
let: "tmp1" := Fst !"l" in
let: "tmp2" := Snd !"l" in
"l" <- ("tmp1", "acc");;
"rev" "tmp2" "hd"
end.
Lemma rev_acc_ht hd acc xs ys :
⊢ {{ is_list hd xs ∗ is_list acc ys }} rev hd acc {{ w, is_list w (reverse xs ++ ys) }}.
Proof.
iIntros "!> [Hxs Hys]".
iLöb as "IH" forall (hd acc xs ys). wp_rec; wp_let.
destruct xs as [|x xs]; iSimplifyEq.
- (* nil *) by wp_match.
- (* cons *) iDestruct "Hxs" as (l hd') "(% & Hx & Hxs)"; iSimplifyEq.
wp_match. wp_load. wp_load. wp_store.
rewrite reverse_cons -assoc.
iApply ("IH" $! hd' (InjRV #l) xs (x :: ys) with "Hxs [Hx Hys]").
iExists l, acc; by iFrame.
Qed.
Lemma rev_ht hd xs :
⊢ {{ is_list hd xs }} rev hd NONEV {{ w, is_list w (reverse xs) }}.
Proof.
iIntros "!> Hxs". rewrite -(right_id_L [] (++) (reverse xs)).
iApply (rev_acc_ht hd NONEV with "[Hxs]"); simpl; by iFrame.
Qed.
End list_reverse.
(** The proofs from Section 5 *)
(** This part contains a formalization of the monotone counter, but with an
explicit construction of the monoid, as we have also done in the proof mode
paper. This should simplify explaining and understanding what is happening.
A version that uses the authoritative monoid and natural number monoid
under max can be found in [theories/heap_lang/lib/counter.v]. *)
Definition newcounter : val := λ: <>, ref #0.
Definition incr : val :=
rec: "incr" "l" :=
let: "n" := !"l" in
if: CAS "l" "n" (#1 + "n") then #() else "incr" "l".
Definition read : val := λ: "l", !"l".
(** The CMRA we need. *)
Inductive M := Auth : nat → M | Frag : nat → M | Bot.
Section M.
Local Arguments cmra_op _ !_ !_/.
Local Arguments op _ _ !_ !_/.
Local Arguments core _ _ !_/.
Canonical Structure M_O : ofe := leibnizO M.
Local Instance M_valid : Valid M := λ x, x ≠ Bot.
Local Instance M_op : Op M := λ x y,
match x, y with
| Auth n, Frag j | Frag j, Auth n => if decide (j ≤ n) then Auth n else Bot
| Frag i, Frag j => Frag (max i j)
| _, _ => Bot
end.
Local Instance M_pcore : PCore M := λ x,
Some match x with Auth j | Frag j => Frag j | _ => Bot end.
Local Instance M_unit : Unit M := Frag 0.
Definition M_ra_mixin : RAMixin M.
Proof.
apply ra_total_mixin; try solve_proper || eauto.
- intros [n1|i1|] [n2|i2|] [n3|i3|];
repeat (simpl; case_decide); f_equal/=; lia.
- intros [n1|i1|] [n2|i2|]; repeat (simpl; case_decide); f_equal/=; lia.
- intros [n|i|]; repeat (simpl; case_decide); f_equal/=; lia.
- by intros [n|i|].
- intros [n1|i1|] y [[n2|i2|] ?]; exists (core y); simplify_eq/=;
repeat (simpl; case_decide); f_equal/=; lia.
- intros [n1|i1|] [n2|i2|]; simpl; by try case_decide.
Qed.
Canonical Structure M_R : cmra := discreteR M M_ra_mixin.
Global Instance M_discrete : CmraDiscrete M_R.
Proof. apply discrete_cmra_discrete. Qed.
Definition M_ucmra_mixin : UcmraMixin M.
Proof.
split; try (done || apply _).
intros [?|?|]; simpl; try case_decide; f_equal/=; lia.
Qed.
Canonical Structure M_UR : ucmra := Ucmra M M_ucmra_mixin.
Global Instance frag_core_id n : CoreId (Frag n).
Proof. by constructor. Qed.
Lemma auth_frag_valid j n : ✓ (Auth n ⋅ Frag j) → j ≤ n.
Proof. simpl. case_decide; first done. by intros []. Qed.
Lemma auth_frag_op (j n : nat) : j ≤ n → Auth n = Auth n ⋅ Frag j.
Proof. intros. by rewrite /= decide_True. Qed.
Lemma M_update n : Auth n ~~> Auth (S n).
Proof.
apply cmra_discrete_total_update=>-[m|j|] /= ?; repeat case_decide; done || lia.
Qed.
End M.
Class counterG Σ := CounterG { #[local] counter_tokG :: inG Σ M_UR }.
Definition counterΣ : gFunctors := #[GFunctor (constRF M_UR)].
Global Instance subG_counterΣ {Σ} : subG counterΣ Σ → counterG Σ.
Proof. intros [?%subG_inG _]%subG_inv. split; apply _. Qed.
Section counter_proof.
Context `{!heapGS Σ, !counterG Σ}.
Implicit Types l : loc.
Definition I (γ : gname) (l : loc) : iProp Σ :=
(∃ c : nat, l ↦ #c ∗ own γ (Auth c))%I.
Definition C (l : loc) (n : nat) : iProp Σ :=
(∃ N γ, inv N (I γ l) ∧ own γ (Frag n))%I.
(** The main proofs. *)
Global Instance C_persistent l n : Persistent (C l n).
Proof. apply _. Qed.
Lemma newcounter_spec :
⊢ {{ True }} newcounter #() {{ v, ∃ l, ⌜v = #l⌝ ∧ C l 0 }}.
Proof.
iIntros "!> _ /=". rewrite /newcounter /=. wp_lam. wp_alloc l as "Hl".
iMod (own_alloc (Auth 0)) as (γ) "Hγ"; first done.
rewrite (auth_frag_op 0 0) //; iDestruct "Hγ" as "[Hγ Hγf]".
set (N:= nroot .@ "counter").
iMod (inv_alloc N _ (I γ l) with "[Hl Hγ]") as "#?".
{ iIntros "!>". iExists 0. by iFrame. }
iModIntro. rewrite /C; eauto 10.
Qed.
Lemma incr_spec l n :
⊢ {{ C l n }} incr #l {{ v, ⌜v = #()⌝ ∧ C l (S n) }}.
Proof.
iIntros "!> Hl /=". iLöb as "IH". wp_rec.
iDestruct "Hl" as (N γ) "[#Hinv Hγf]".
wp_bind (! _)%E. iInv "Hinv" as (c) "[Hl Hγ]".
wp_load. iModIntro. iSplitL "Hl Hγ"; [iNext; iExists c; by iFrame|].
wp_let. wp_op.
wp_bind (CmpXchg _ _ _). iInv "Hinv" as (c') ">[Hl Hγ]".
destruct (decide (c' = c)) as [->|].
- iCombine "Hγ" "Hγf" as "Hγ".
iDestruct (own_valid with "Hγ") as %?%auth_frag_valid; rewrite -auth_frag_op //.
iMod (own_update with "Hγ") as "Hγ"; first apply M_update.
rewrite (auth_frag_op (S n) (S c)); last lia; iDestruct "Hγ" as "[Hγ Hγf]".
wp_cmpxchg_suc. iModIntro. iSplitL "Hl Hγ".
{ iNext. iExists (S c). rewrite Nat2Z.inj_succ Z.add_1_l. by iFrame. }
wp_pures. by iFrame "#∗".
- wp_cmpxchg_fail; first (intros [=]; abstract lia).
iModIntro. iSplitL "Hl Hγ"; [iNext; iExists c'; by iFrame|].
wp_pures. iApply "IH". iFrame "#∗".
Qed.
Check "read_spec".
Lemma read_spec l n :
⊢ {{ C l n }} read #l {{ v, ∃ m : nat, ⌜v = #m ∧ n ≤ m⌝ ∧ C l m }}.
Proof.
iIntros "!> Hl /=". iDestruct "Hl" as (N γ) "[#Hinv Hγf]".
rewrite /read /=. wp_lam. Show. iInv "Hinv" as (c) "[Hl Hγ]". wp_load. Show.
iDestruct (own_valid γ (Auth c ⋅ Frag n) with "[-]") as %H%auth_frag_valid.
{ iApply own_op. by iFrame. }
rewrite (auth_frag_op c c); last lia; iDestruct "Hγ" as "[Hγ Hγf']".
iModIntro. iSplitL "Hl Hγ"; [iNext; iExists c; by iFrame|].
rewrite /C; eauto 10 with lia.
Qed.
End counter_proof.