-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdlx_test.c
292 lines (262 loc) · 6.77 KB
/
dlx_test.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#include <ctype.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "dlx.h"
#define F(i,n) for(int i = 0; i < n; i++)
#define EXPECT(X) if (!(X)) die("FAIL: line %d: %s", __LINE__, #X)
static void die(const char *err, ...) {
va_list params;
va_start(params, err);
vfprintf(stderr, err, params);
fputc('\n', stderr);
va_end(params);
exit(1);
}
// From http://school.maths.uwa.edu.au/~gordon/sudokumin.php
static char sudoku17_1[] =
".......1."
"4........"
".2......."
"....5.4.7"
"..8...3.."
"..1.9...."
"3..4..2.."
".5.1....."
"...8.6..."
"";
static char sudoku17_1_solved[] =
"693784512"
"487512936"
"125963874"
"932651487"
"568247391"
"741398625"
"319475268"
"856129743"
"274836159"
"";
void parse_sudoku(int grid[9][9], char *s) {
F(r, 9) F(c, 9) {
grid[r][c] = isdigit(*s) ? *s - '0' : 0;
s++;
}
}
static void test_sudoku() {
int grid[9][9];
parse_sudoku(grid, sudoku17_1);
dlx_t dlx = dlx_new();
int nine(int a, int b, int c) { return ((a * 9) + b) * 9 + c; }
// Add constraints.
F(n, 9) F(r, 9) F(c, 9) {
int row = nine(n, r, c);
dlx_set(dlx, row, nine(0, r, c));
dlx_set(dlx, row, nine(1, n, r));
dlx_set(dlx, row, nine(2, n, c));
dlx_set(dlx, row, nine(3, n, r / 3 * 3 + c / 3));
}
// Choose rows corresponding to given digits.
F(r, 9) F(c, 9) if (grid[r][c]) dlx_pick_row(dlx, nine(grid[r][c] - 1, r, c));
int count = 0;
void f(int row[], int n) {
F(i, n) {
int k = row[i];
grid[k/9%9][k%9] = 1 + k/9/9;
}
count++;
}
dlx_forall_cover(dlx, f);
EXPECT(count == 1);
int sol[9][9];
parse_sudoku(sol, sudoku17_1_solved);
F(r, 9) F(c, 9) EXPECT(grid[r][c] == sol[r][c]);
dlx_clear(dlx);
}
static void test_sudoku_duplicate_constraints() {
int grid[9][9];
parse_sudoku(grid, sudoku17_1);
dlx_t dlx = dlx_new();
int nine(int a, int b, int c) { return ((a * 9) + b) * 9 + c; }
// Add constraints multiple times.
F(n, 9) F(r, 9) F(c, 9) {
int row = nine(n, r, c);
dlx_set(dlx, row, nine(0, r, c));
dlx_set(dlx, row, nine(1, n, r));
dlx_set(dlx, row, nine(2, n, c));
dlx_set(dlx, row, nine(3, n, r / 3 * 3 + c / 3));
}
F(n, 9) F(r, 9) F(c, 9) {
int row = nine(n, r, c);
dlx_set(dlx, row, nine(0, r, c));
dlx_set(dlx, row, nine(0, r, c));
dlx_set(dlx, row, nine(1, n, r));
dlx_set(dlx, row, nine(2, n, c));
dlx_set(dlx, row, nine(3, n, r / 3 * 3 + c / 3));
dlx_set(dlx, row, nine(3, n, r / 3 * 3 + c / 3));
dlx_set(dlx, row, nine(2, n, c));
dlx_set(dlx, row, nine(1, n, r));
}
F(r, 9) F(c, 9) if (grid[r][c]) dlx_pick_row(dlx, nine(grid[r][c] - 1, r, c));
int count = 0;
void f(int row[], int n) {
F(i, n) {
int k = row[i];
grid[k/9%9][k%9] = 1 + k/9/9;
}
count++;
}
dlx_forall_cover(dlx, f);
EXPECT(count == 1);
int sol[9][9];
parse_sudoku(sol, sudoku17_1_solved);
F(r, 9) F(c, 9) EXPECT(grid[r][c] == sol[r][c]);
dlx_clear(dlx);
}
static void test_sudoku_random_order() {
int grid[9][9];
parse_sudoku(grid, sudoku17_1);
dlx_t dlx = dlx_new();
srandom(time(NULL));
const int con = 4*9*9*9;
int shuf[con];
F(i, con) shuf[i] = i;
F(i, con) {
int j = i + random() % (con - i), tmp = shuf[i];
shuf[i] = shuf[j];
shuf[j] = tmp;
}
int nine(int a, int b, int c) { return ((a * 9) + b) * 9 + c; }
// Add rows and constraints in random order.
F(i, con) {
int m = shuf[i];
int k = m/9/9/9;
int n = m/9/9%9;
int r = m/9%9;
int c = m%9;
int row = nine(n, r, c);
switch (k) {
case 0:
dlx_set(dlx, row, nine(0, r, c));
break;
case 1:
dlx_set(dlx, row, nine(1, n, r));
break;
case 2:
dlx_set(dlx, row, nine(2, n, c));
break;
case 3:
dlx_set(dlx, row, nine(3, n, r / 3 * 3 + c / 3));
break;
}
}
F(r, 9) F(c, 9) if (grid[r][c]) dlx_pick_row(dlx, nine(grid[r][c] - 1, r, c));
int count = 0;
void f(int row[], int n) {
F(i, n) {
int k = row[i];
grid[k/9%9][k%9] = 1 + k/9/9;
}
count++;
}
dlx_forall_cover(dlx, f);
EXPECT(count == 1);
int sol[9][9];
parse_sudoku(sol, sudoku17_1_solved);
F(r, 9) F(c, 9) EXPECT(grid[r][c] == sol[r][c]);
dlx_clear(dlx);
}
void test_counter() {
dlx_t dlx = dlx_new();
// Set entry (i, 0) for i in [0..9].
// and entry (i, 1) for i in [10..13].
F(i, 10) dlx_set(dlx, i, 0);
F(i, 3) dlx_set(dlx, 10 + i, 1);
// The exact covers are pairs of rows r0, r1 where r0 lies in [10..13] and r1
// in [0..9].
// DLX tries the most constrained column first, and then each row in the
// order they were added, so we check r1 + 10*(r0 - 10) goes from 0 to 29.
int counter = 0;
void f(int r[], int n) {
EXPECT(n == 2);
EXPECT(r[1] + 10*(r[0] - 10) == counter++);
}
dlx_forall_cover(dlx, f);
EXPECT(30 == counter);
dlx_clear(dlx);
}
void test_perm() {
dlx_t dlx = dlx_new();
F(i, 4) F(j, 4) {
// Consder a string of length 4 and the characters {a, b, c, d}.
// Row 4*i + j represents putting the jth character the ith position
// of the string. We set column i so that exactly one character will go
// into each position, and we set column 4 + j so that each character is
// used exactly once. Thus the exact covers map to all the permutations of
// "abcd".
dlx_set(dlx, 4*i + j, i);
dlx_set(dlx, 4*i + j, 4 + j);
}
int counter = 0;
void f(int r[], int n) {
char s[5];
s[4] = 0;
F(i, n) s[r[i]/4] = r[i]%4 + 'a';
// Check that the index of s in the list of all sorted permutations
// matches the counter.
int present[4] = {1,1,1,1}, index = 0;
F(i, 4) {
index *= 4-i;
int k = s[i] - 'a';
present[k] = 0;
while(--k >= 0) index += present[k];
}
EXPECT(index == counter++);
}
dlx_forall_cover(dlx, f);
EXPECT(4*3*2*1 == counter);
dlx_clear(dlx);
}
void test_readme_example() {
// Initialize a new exact cover instance.
dlx_t dlx = dlx_new();
// Setup the rows
dlx_set(dlx, 0, 0);
dlx_set(dlx, 0, 2);
dlx_set(dlx, 1, 1);
dlx_set(dlx, 1, 2);
dlx_set(dlx, 2, 1);
dlx_set(dlx, 3, 0);
dlx_set(dlx, 3, 1);
// Mark the last column as optional.
dlx_mark_optional(dlx, 2);
int k = 0;
void f(int row[], int n) {
switch(k++) {
case 0:
EXPECT(n == 2);
EXPECT(row[0] == 0);
EXPECT(row[1] == 2);
break;
case 1:
EXPECT(n == 1);
EXPECT(row[0] == 3);
break;
default:
EXPECT(0); // BUG!
break;
}
}
dlx_forall_cover(dlx, f);
// Clean up.
dlx_clear(dlx);
}
int main() {
test_sudoku();
test_sudoku_duplicate_constraints();
test_sudoku_random_order();
test_counter();
test_perm();
test_readme_example();
return 0;
}