forked from diffpy/diffpy.utils
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiffraction_objects.py
485 lines (421 loc) · 18.1 KB
/
diffraction_objects.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import datetime
import warnings
from copy import deepcopy
import numpy as np
from diffpy.utils.tools import get_package_info
from diffpy.utils.transforms import d_to_q, d_to_tth, q_to_d, q_to_tth, tth_to_d, tth_to_q
QQUANTITIES = ["q"]
ANGLEQUANTITIES = ["angle", "tth", "twotheta", "2theta"]
DQUANTITIES = ["d", "dspace"]
XQUANTITIES = ANGLEQUANTITIES + DQUANTITIES + QQUANTITIES
XUNITS = ["degrees", "radians", "rad", "deg", "inv_angs", "inv_nm", "nm-1", "A-1"]
x_grid_emsg = (
"objects are not on the same x-grid. You may add them using the self.add method "
"and specifying how to handle the mismatch."
)
def _xtype_wmsg(xtype):
return (
f"I don't know how to handle the xtype, '{xtype}'. "
f"Please rerun specifying an xtype from {*XQUANTITIES, }"
)
def _setter_wmsg(attribute):
return (
f"Direct modification of attribute '{attribute}' is not allowed. "
f"Please use 'insert_scattering_quantity' to modify '{attribute}'.",
)
class DiffractionObject:
def __init__(
self, name=None, wavelength=None, scat_quantity=None, metadata=None, xarray=None, yarray=None, xtype=None
):
if name is None:
name = ""
self.name = name
if metadata is None:
metadata = {}
self.metadata = metadata
if xtype is None:
xtype = ""
self.scat_quantity = scat_quantity
self.wavelength = wavelength
if xarray is None:
xarray = np.empty(0)
if yarray is None:
yarray = np.empty(0)
self.input_data(xarray, yarray, xtype)
def __eq__(self, other):
if not isinstance(other, DiffractionObject):
return NotImplemented
self_attributes = [key for key in self.__dict__ if not key.startswith("_")]
other_attributes = [key for key in other.__dict__ if not key.startswith("_")]
if not sorted(self_attributes) == sorted(other_attributes):
return False
for key in self_attributes:
value = getattr(self, key)
other_value = getattr(other, key)
if isinstance(value, float):
if (
not (value is None and other_value is None)
and (value is None)
or (other_value is None)
or not np.isclose(value, other_value, rtol=1e-5)
):
return False
elif isinstance(value, list) and all(isinstance(i, np.ndarray) for i in value):
if not all(np.allclose(i, j, rtol=1e-5) for i, j in zip(value, other_value)):
return False
else:
if value != other_value:
return False
return True
def __add__(self, other):
summed = deepcopy(self)
if isinstance(other, int) or isinstance(other, float) or isinstance(other, np.ndarray):
summed.on_tth[1] = self.on_tth[1] + other
summed.on_q[1] = self.on_q[1] + other
elif not isinstance(other, DiffractionObject):
raise TypeError("I only know how to sum two DiffractionObject objects")
elif self.on_tth[0].all() != other.on_tth[0].all():
raise RuntimeError(x_grid_emsg)
else:
summed.on_tth[1] = self.on_tth[1] + other.on_tth[1]
summed.on_q[1] = self.on_q[1] + other.on_q[1]
return summed
def __radd__(self, other):
summed = deepcopy(self)
if isinstance(other, int) or isinstance(other, float) or isinstance(other, np.ndarray):
summed.on_tth[1] = self.on_tth[1] + other
summed.on_q[1] = self.on_q[1] + other
elif not isinstance(other, DiffractionObject):
raise TypeError("I only know how to sum two Scattering_object objects")
elif self.on_tth[0].all() != other.on_tth[0].all():
raise RuntimeError(x_grid_emsg)
else:
summed.on_tth[1] = self.on_tth[1] + other.on_tth[1]
summed.on_q[1] = self.on_q[1] + other.on_q[1]
return summed
def __sub__(self, other):
subtracted = deepcopy(self)
if isinstance(other, int) or isinstance(other, float) or isinstance(other, np.ndarray):
subtracted.on_tth[1] = self.on_tth[1] - other
subtracted.on_q[1] = self.on_q[1] - other
elif not isinstance(other, DiffractionObject):
raise TypeError("I only know how to subtract two Scattering_object objects")
elif self.on_tth[0].all() != other.on_tth[0].all():
raise RuntimeError(x_grid_emsg)
else:
subtracted.on_tth[1] = self.on_tth[1] - other.on_tth[1]
subtracted.on_q[1] = self.on_q[1] - other.on_q[1]
return subtracted
def __rsub__(self, other):
subtracted = deepcopy(self)
if isinstance(other, int) or isinstance(other, float) or isinstance(other, np.ndarray):
subtracted.on_tth[1] = other - self.on_tth[1]
subtracted.on_q[1] = other - self.on_q[1]
elif not isinstance(other, DiffractionObject):
raise TypeError("I only know how to subtract two Scattering_object objects")
elif self.on_tth[0].all() != other.on_tth[0].all():
raise RuntimeError(x_grid_emsg)
else:
subtracted.on_tth[1] = other.on_tth[1] - self.on_tth[1]
subtracted.on_q[1] = other.on_q[1] - self.on_q[1]
return subtracted
def __mul__(self, other):
multiplied = deepcopy(self)
if isinstance(other, int) or isinstance(other, float) or isinstance(other, np.ndarray):
multiplied.on_tth[1] = other * self.on_tth[1]
multiplied.on_q[1] = other * self.on_q[1]
elif not isinstance(other, DiffractionObject):
raise TypeError("I only know how to multiply two Scattering_object objects")
elif self.on_tth[0].all() != other.on_tth[0].all():
raise RuntimeError(x_grid_emsg)
else:
multiplied.on_tth[1] = self.on_tth[1] * other.on_tth[1]
multiplied.on_q[1] = self.on_q[1] * other.on_q[1]
return multiplied
def __rmul__(self, other):
multiplied = deepcopy(self)
if isinstance(other, int) or isinstance(other, float) or isinstance(other, np.ndarray):
multiplied.on_tth[1] = other * self.on_tth[1]
multiplied.on_q[1] = other * self.on_q[1]
elif self.on_tth[0].all() != other.on_tth[0].all():
raise RuntimeError(x_grid_emsg)
else:
multiplied.on_tth[1] = self.on_tth[1] * other.on_tth[1]
multiplied.on_q[1] = self.on_q[1] * other.on_q[1]
return multiplied
def __truediv__(self, other):
divided = deepcopy(self)
if isinstance(other, int) or isinstance(other, float) or isinstance(other, np.ndarray):
divided.on_tth[1] = other / self.on_tth[1]
divided.on_q[1] = other / self.on_q[1]
elif not isinstance(other, DiffractionObject):
raise TypeError("I only know how to multiply two Scattering_object objects")
elif self.on_tth[0].all() != other.on_tth[0].all():
raise RuntimeError(x_grid_emsg)
else:
divided.on_tth[1] = self.on_tth[1] / other.on_tth[1]
divided.on_q[1] = self.on_q[1] / other.on_q[1]
return divided
def __rtruediv__(self, other):
divided = deepcopy(self)
if isinstance(other, int) or isinstance(other, float) or isinstance(other, np.ndarray):
divided.on_tth[1] = other / self.on_tth[1]
divided.on_q[1] = other / self.on_q[1]
elif self.on_tth[0].all() != other.on_tth[0].all():
raise RuntimeError(x_grid_emsg)
else:
divided.on_tth[1] = other.on_tth[1] / self.on_tth[1]
divided.on_q[1] = other.on_q[1] / self.on_q[1]
return divided
@property
def all_arrays(self):
return self._all_arrays
@all_arrays.setter
def all_arrays(self, _):
raise AttributeError(_setter_wmsg("all_arrays"))
@property
def input_xtype(self):
return self._input_xtype
@input_xtype.setter
def input_xtype(self, _):
raise AttributeError(_setter_wmsg("input_xtype"))
def set_angles_from_list(self, angles_list):
self.angles = angles_list
self.n_steps = len(angles_list) - 1.0
self.begin_angle = self.angles[0]
self.end_angle = self.angles[-1]
def set_qs_from_range(self, begin_q, end_q, step_size=None, n_steps=None):
"""
create an array of linear spaced Q-values
Parameters
----------
begin_q float
the beginning angle
end_q float
the ending angle
step_size float
the size of the step between points. Only specify step_size or n_steps, not both
n_steps integer
the number of steps. Odd numbers are preferred. Only specify step_size or n_steps, not both
Returns
-------
Sets self.qs
self.qs array of floats
the q values in the independent array
"""
self.qs = self._set_array_from_range(begin_q, end_q, step_size=step_size, n_steps=n_steps)
def set_angles_from_range(self, begin_angle, end_angle, step_size=None, n_steps=None):
"""
create an array of linear spaced angle-values
Parameters
----------
begin_angle float
the beginning angle
end_angle float
the ending angle
step_size float
the size of the step between points. Only specify step_size or n_steps, not both
n_steps integer
the number of steps. Odd numbers are preferred. Only specify step_size or n_steps, not both
Returns
-------
Sets self.angles
self.angles array of floats
the q values in the independent array
"""
self.angles = self._set_array_from_range(begin_angle, end_angle, step_size=step_size, n_steps=n_steps)
def _set_array_from_range(self, begin, end, step_size=None, n_steps=None):
if step_size is not None and n_steps is not None:
print(
"WARNING: both step_size and n_steps have been given. n_steps will be used and step_size will be "
"reset."
)
array = np.linspace(begin, end, n_steps)
elif step_size is not None:
array = np.arange(begin, end, step_size)
elif n_steps is not None:
array = np.linspace(begin, end, n_steps)
return array
def get_array_index(self, value, xtype=None):
"""
Return the index of the closest value in the array associated with the specified xtype.
Parameters
----------
xtype str
the xtype used to access the array
value float
the target value to search for
Returns
-------
the index of the value in the array
"""
if xtype is None:
xtype = self._input_xtype
array = self.on_xtype(xtype)[0]
if len(array) == 0:
raise ValueError(f"The '{xtype}' array is empty. Please ensure it is initialized.")
i = (np.abs(array - value)).argmin()
return i
def _set_xarrays(self, xarray, xtype):
self._all_arrays = np.empty(shape=(len(xarray), 4))
if xtype.lower() in QQUANTITIES:
self._all_arrays[:, 1] = xarray
self._all_arrays[:, 2] = q_to_tth(xarray, self.wavelength)
self._all_arrays[:, 3] = q_to_d(xarray)
elif xtype.lower() in ANGLEQUANTITIES:
self._all_arrays[:, 2] = xarray
self._all_arrays[:, 1] = tth_to_q(xarray, self.wavelength)
self._all_arrays[:, 3] = tth_to_d(xarray, self.wavelength)
elif xtype.lower() in DQUANTITIES:
self._all_arrays[:, 3] = xarray
self._all_arrays[:, 1] = d_to_q(xarray)
self._all_arrays[:, 2] = d_to_tth(xarray, self.wavelength)
self.qmin = np.nanmin(self._all_arrays[:, 1], initial=np.inf)
self.qmax = np.nanmax(self._all_arrays[:, 1], initial=0.0)
self.tthmin = np.nanmin(self._all_arrays[:, 2], initial=np.inf)
self.tthmax = np.nanmax(self._all_arrays[:, 2], initial=0.0)
self.dmin = np.nanmin(self._all_arrays[:, 3], initial=np.inf)
self.dmax = np.nanmax(self._all_arrays[:, 3], initial=0.0)
def input_data(
self,
xarray,
yarray,
xtype,
metadata={},
scat_quantity=None,
name=None,
wavelength=None,
):
f"""
insert a new scattering quantity into the scattering object
Parameters
----------
xarray array-like of floats
the independent variable array
yarray array-like of floats
the dependent variable array
xtype string
the type of quantity for the independent variable from {*XQUANTITIES, }
metadata, scat_quantity, name and wavelength are optional. They have the same
meaning as in the constructor. Values will only be overwritten if non-empty values are passed.
Returns
-------
Nothing. Updates the object in place.
"""
# Check xarray and yarray have the same length
if len(xarray) != len(yarray):
raise ValueError(
"'xarray' and 'yarray' must have the same length. "
"Please re-initialize 'DiffractionObject' or re-run the method 'insert_scattering_quantity' "
"with 'xarray' and 'yarray' of identical length."
)
self._set_xarrays(xarray, xtype)
self._all_arrays[:, 0] = yarray
self._input_xtype = xtype
# only update these optional values if non-empty quantities are passed to avoid overwriting
# valid data inadvertently
if metadata:
self.metadata = metadata
if scat_quantity is not None:
self.scat_quantity = scat_quantity
if name is not None:
self.name = name
if wavelength is not None:
self.wavelength = wavelength
# Check xtype is valid. An empty string is the default value.
if xtype != "":
if xtype not in XQUANTITIES:
raise ValueError(_xtype_wmsg(xtype))
def _get_original_array(self):
if self._input_xtype in QQUANTITIES:
return self.on_q(), "q"
elif self._input_xtype in ANGLEQUANTITIES:
return self.on_tth(), "tth"
elif self._input_xtype in DQUANTITIES:
return self.on_d(), "d"
def on_q(self):
return [self.all_arrays[:, 1], self.all_arrays[:, 0]]
def on_tth(self):
return [self.all_arrays[:, 2], self.all_arrays[:, 0]]
def on_d(self):
return [self.all_arrays[:, 3], self.all_arrays[:, 0]]
def scale_to(self, target_diff_object, xtype=None, xvalue=None):
"""
Return a new diffraction object which is the current object but recaled in y to the target
Parameters
----------
target_diff_object: DiffractionObject
the diffraction object you want to scale the current one on to
xtype: string, optional. Default is Q
the xtype, from {XQUANTITIES}, that you will specify a point from to scale to
xvalue: float. Default is the midpoint of the array
the y-value in the target at this x-value will be used as the factor to scale to.
The entire array is scaled be the factor that places on on top of the other at that point.
xvalue does not have to be in the x-array, the point closest to this point will be used for the scaling.
Returns
-------
the rescaled DiffractionObject as a new object
"""
scaled = deepcopy(self)
if xtype is None:
xtype = "q"
data = self.on_xtype(xtype)
target = target_diff_object.on_xtype(xtype)
if xvalue is None:
xvalue = data[0][0] + (data[0][-1] - data[0][0]) / 2.0
xindex = (np.abs(data[0] - xvalue)).argmin()
ytarget = target[1][xindex]
yself = data[1][xindex]
scaled.on_tth[1] = data[1] * ytarget / yself
scaled.on_q[1] = data[1] * ytarget / yself
return scaled
def on_xtype(self, xtype):
"""
Return a list of two 1D np array with x and y data, raise an error if the specified xtype is invalid
Parameters
----------
xtype str
the type of quantity for the independent variable from {*XQUANTITIES, }
Returns
-------
a list of two 1D np array with x and y data
"""
if xtype.lower() in ANGLEQUANTITIES:
return self.on_tth()
elif xtype.lower() in QQUANTITIES:
return self.on_q()
elif xtype.lower() in DQUANTITIES:
return self.on_d()
else:
raise ValueError(_xtype_wmsg(xtype))
def dump(self, filepath, xtype=None):
if xtype is None:
xtype = "q"
if xtype in QQUANTITIES:
data_to_save = np.column_stack((self.on_q()[0], self.on_q()[1]))
elif xtype in ANGLEQUANTITIES:
data_to_save = np.column_stack((self.on_tth()[0], self.on_tth()[1]))
elif xtype in DQUANTITIES:
data_to_save = np.column_stack((self.on_d()[0], self.on_d()[1]))
else:
warnings.warn(_xtype_wmsg(xtype))
self.metadata.update(get_package_info("diffpy.utils", metadata=self.metadata))
self.metadata["creation_time"] = datetime.datetime.now()
with open(filepath, "w") as f:
f.write(
f"[DiffractionObject]\nname = {self.name}\nwavelength = {self.wavelength}\n"
f"scat_quantity = {self.scat_quantity}\n"
)
for key, value in self.metadata.items():
f.write(f"{key} = {value}\n")
f.write("\n#### start data\n")
np.savetxt(f, data_to_save, delimiter=" ")
def copy(self):
"""
Create a deep copy of the DiffractionObject instance.
Returns
-------
DiffractionObject
A new instance of DiffractionObject, which is a deep copy of the current instance.
"""
return deepcopy(self)