-
Notifications
You must be signed in to change notification settings - Fork 805
/
Copy pathHybrid.lyx
834 lines (674 loc) · 13.7 KB
/
Hybrid.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize 11
\spacing single
\use_hyperref false
\papersize default
\use_geometry true
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 1in
\topmargin 1in
\rightmargin 1in
\bottommargin 1in
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
Hybrid Inference
\end_layout
\begin_layout Author
Frank Dellaert
\end_layout
\begin_layout Date
January 2023
\end_layout
\begin_layout Section
Hybrid Conditionals
\end_layout
\begin_layout Standard
Here we develop a hybrid conditional density, on continuous variables (typically
a measurement
\begin_inset Formula $x$
\end_inset
), given a mix of continuous variables
\begin_inset Formula $y$
\end_inset
and discrete variables
\begin_inset Formula $m$
\end_inset
.
We start by reviewing a Gaussian conditional density and its invariants
(relationship between density, error, and normalization constant), and
then work out what needs to happen for a hybrid version.
\end_layout
\begin_layout Subsubsection*
GaussianConditional
\end_layout
\begin_layout Standard
A
\emph on
GaussianConditional
\emph default
is a properly normalized, multivariate Gaussian conditional density:
\begin_inset Formula
\[
P(x|y)=\frac{1}{\sqrt{|2\pi\Sigma|}}\exp\left\{ -\frac{1}{2}\|Rx+Sy-d\|_{\Sigma}^{2}\right\}
\]
\end_inset
where
\begin_inset Formula $R$
\end_inset
is square and upper-triangular.
For every
\emph on
GaussianConditional
\emph default
, we have the following
\series bold
invariant
\series default
,
\begin_inset Formula
\begin{equation}
\log P(x|y)=K_{gc}-E_{gc}(x,y),\label{eq:gc_invariant}
\end{equation}
\end_inset
with the
\series bold
log-normalization constant
\series default
\begin_inset Formula $K_{gc}$
\end_inset
equal to
\begin_inset Formula
\begin{equation}
K_{gc}=\log\frac{1}{\sqrt{|2\pi\Sigma|}}\label{eq:log_constant}
\end{equation}
\end_inset
and the
\series bold
error
\series default
\begin_inset Formula $E_{gc}(x,y)$
\end_inset
equal to the negative log-density, up to a constant:
\begin_inset Formula
\begin{equation}
E_{gc}(x,y)=\frac{1}{2}\|Rx+Sy-d\|_{\Sigma}^{2}.\label{eq:gc_error}
\end{equation}
\end_inset
.
\end_layout
\begin_layout Subsubsection*
HybridGaussianConditional
\end_layout
\begin_layout Standard
A
\emph on
HybridGaussianConditional
\emph default
(maybe to be renamed to
\emph on
HybridGaussianConditionalComponent
\emph default
) just indexes into a number of
\emph on
GaussianConditional
\emph default
instances, that are each properly normalized:
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
P(x|y,m)=P_{m}(x|y).
\]
\end_inset
We store one
\emph on
GaussianConditional
\emph default
\begin_inset Formula $P_{m}(x|y)$
\end_inset
for every possible assignment
\begin_inset Formula $m$
\end_inset
to a set of discrete variables.
As
\emph on
HybridGaussianConditional
\emph default
is a
\emph on
Conditional
\emph default
, it needs to satisfy the a similar invariant to
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:gc_invariant"
plural "false"
caps "false"
noprefix "false"
\end_inset
:
\begin_inset Formula
\begin{equation}
\log P(x|y,m)=K_{gm}-E_{gm}(x,y,m).\label{eq:gm_invariant}
\end{equation}
\end_inset
If we take the log of
\begin_inset Formula $P(x|y,m)$
\end_inset
we get
\begin_inset Formula
\begin{equation}
\log P(x|y,m)=\log P_{m}(x|y)=K_{gc}(m)-E_{gcm}(x,y).\label{eq:gm_log}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
\noindent
For conciseness, we will write
\begin_inset Formula $K_{gc}(m)$
\end_inset
as
\begin_inset Formula $K_{gcm}$
\end_inset
.
\end_layout
\begin_layout Standard
\SpecialChar allowbreak
\end_layout
\begin_layout Standard
\noindent
The key point here is that
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset Formula $K_{gm}$
\end_inset
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
is the log-normalization constant for the complete
\emph on
HybridGaussianConditional
\emph default
across all values of
\begin_inset Formula $m$
\end_inset
, and cannot be dependent on the value of
\begin_inset Formula $m$
\end_inset
.
In contrast,
\begin_inset Formula $K_{gcm}$
\end_inset
is the log-normalization constant for a specific
\emph on
GaussianConditional
\emph default
mode (thus dependent on
\begin_inset Formula $m$
\end_inset
) and can have differing values based on the covariance matrices for each
mode.
Thus to obtain a constant
\begin_inset Formula $K_{gm}$
\end_inset
which satisfies the invariant, we need to specify
\begin_inset Formula $E_{gm}(x,y,m)$
\end_inset
accordingly.
\end_layout
\begin_layout Standard
\SpecialChar allowbreak
\end_layout
\begin_layout Standard
\noindent
By equating
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:gm_invariant"
plural "false"
caps "false"
noprefix "false"
\end_inset
and
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:gm_log"
plural "false"
caps "false"
noprefix "false"
\end_inset
, we see that this can be achieved by defining the error
\begin_inset Formula $E_{gm}(x,y,m)$
\end_inset
as
\begin_inset Formula
\begin{equation}
E_{gm}(x,y,m)=E_{gcm}(x,y)+K_{gm}-K_{gcm}\label{eq:gm_error}
\end{equation}
\end_inset
where choose
\begin_inset Formula $K_{gm}=\max K_{gcm}$
\end_inset
, as then the error will always be positive.
\end_layout
\begin_layout Section
Hybrid Factors
\end_layout
\begin_layout Standard
In GTSAM, we typically condition on known measurements, and factors encode
the resulting negative log-likelihood of the unknown variables
\begin_inset Formula $y$
\end_inset
given the measurements
\begin_inset Formula $x$
\end_inset
.
We review how a Gaussian conditional density is converted into a Gaussian
factor, and then develop a hybrid version satisfying the correct invariants
as well.
\end_layout
\begin_layout Subsubsection*
JacobianFactor
\end_layout
\begin_layout Standard
A
\emph on
JacobianFactor
\emph default
typically results from a
\emph on
GaussianConditional
\emph default
by having known values
\begin_inset Formula $\bar{x}$
\end_inset
for the
\begin_inset Quotes eld
\end_inset
measurement
\begin_inset Quotes erd
\end_inset
\begin_inset Formula $x$
\end_inset
:
\begin_inset Formula
\begin{equation}
L(y)\propto P(\bar{x}|y)\label{eq:likelihood}
\end{equation}
\end_inset
In GTSAM factors represent the negative log-likelihood
\begin_inset Formula $E_{jf}(y)$
\end_inset
and hence we have
\begin_inset Formula
\[
E_{jf}(y)=-\log L(y)=C-\log P(\bar{x}|y),
\]
\end_inset
with
\begin_inset Formula $C$
\end_inset
the log of the proportionality constant in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:likelihood"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
Substituting in
\begin_inset Formula $\log P(\bar{x}|y)$
\end_inset
from the invariant
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:gc_invariant"
plural "false"
caps "false"
noprefix "false"
\end_inset
we obtain
\begin_inset Formula
\[
E_{jf}(y)=C-K_{gc}+E_{gc}(\bar{x},y).
\]
\end_inset
The
\emph on
likelihood
\emph default
function in
\emph on
GaussianConditional
\emph default
chooses
\begin_inset Formula $C=K_{gc}$
\end_inset
, and the
\emph on
JacobianFactor
\emph default
does not store any constant; it just implements:
\begin_inset Formula
\[
E_{jf}(y)=E_{gc}(\bar{x},y)=\frac{1}{2}\|R\bar{x}+Sy-d\|_{\Sigma}^{2}=\frac{1}{2}\|Ay-b\|_{\Sigma}^{2}
\]
\end_inset
with
\begin_inset Formula $A=S$
\end_inset
and
\begin_inset Formula $b=d-R\bar{x}$
\end_inset
.
\end_layout
\begin_layout Subsubsection*
HybridGaussianFactor
\end_layout
\begin_layout Standard
Analogously, a
\emph on
HybridGaussianFactor
\emph default
typically results from a HybridGaussianConditional by having known values
\begin_inset Formula $\bar{x}$
\end_inset
for the
\begin_inset Quotes eld
\end_inset
measurement
\begin_inset Quotes erd
\end_inset
\begin_inset Formula $x$
\end_inset
:
\begin_inset Formula
\[
L(y,m)\propto P(\bar{x}|y,m).
\]
\end_inset
We will similarly implement the negative log-likelihood
\begin_inset Formula $E_{mf}(y,m)$
\end_inset
:
\begin_inset Formula
\[
E_{mf}(y,m)=-\log L(y,m)=C-\log P(\bar{x}|y,m).
\]
\end_inset
Since we know the log-density from the invariant
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:gm_invariant"
plural "false"
caps "false"
noprefix "false"
\end_inset
, we obtain
\begin_inset Formula
\[
\log P(\bar{x}|y,m)=K_{gm}-E_{gm}(\bar{x},y,m),
\]
\end_inset
and hence
\begin_inset Formula
\[
E_{mf}(y,m)=C+E_{gm}(\bar{x},y,m)-K_{gm}.
\]
\end_inset
Substituting in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:gm_error"
plural "false"
caps "false"
noprefix "false"
\end_inset
we finally have an expression where
\begin_inset Formula $K_{gm}$
\end_inset
canceled out, but we have a dependence on the individual component constants
\begin_inset Formula $K_{gcm}$
\end_inset
:
\begin_inset Formula
\begin{equation}
E_{mf}(y,m)=C+E_{gcm}(\bar{x},y)-K_{gcm}\label{eq:mixture_factor}
\end{equation}
\end_inset
Unfortunately, we can no longer choose
\begin_inset Formula $C$
\end_inset
independently from
\begin_inset Formula $m$
\end_inset
to make the constant disappear, since
\begin_inset Formula $C$
\end_inset
has to be a constant applicable across all
\begin_inset Formula $m$
\end_inset
.
\end_layout
\begin_layout Standard
\SpecialChar allowbreak
\end_layout
\begin_layout Standard
\noindent
There are two possibilities:
\end_layout
\begin_layout Enumerate
Implement likelihood to yield both a hybrid factor
\emph on
and
\emph default
a discrete factor.
\end_layout
\begin_layout Enumerate
Hide the constant inside the collection of JacobianFactor instances, which
is the possibility we implement.
\end_layout
\begin_layout Standard
In either case, we implement the mixture factor
\begin_inset Formula $E_{mf}(y,m)$
\end_inset
as a set of
\emph on
JacobianFactor
\emph default
instances
\begin_inset Formula $E_{mf}(y,m)$
\end_inset
, indexed by the discrete assignment
\begin_inset Formula $m$
\end_inset
:
\begin_inset Formula
\[
E_{mf}(y,m)=E_{jfm}(y)=\frac{1}{2}\|A_{m}y-b_{m}\|_{\Sigma_{mfm}}^{2}.
\]
\end_inset
In GTSAM, we define
\begin_inset Formula $A_{m}$
\end_inset
and
\begin_inset Formula $b_{m}$
\end_inset
strategically to make the
\emph on
JacobianFactor
\emph default
compute the constant, as well:
\begin_inset Formula
\[
\frac{1}{2}\|A_{m}y-b_{m}\|_{\Sigma_{mfm}}^{2}=C+E_{gcm}(\bar{x},y)-K_{gcm}.
\]
\end_inset
Substituting in the definition
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:gc_error"
plural "false"
caps "false"
noprefix "false"
\end_inset
for
\begin_inset Formula $E_{gcm}(\bar{x},y)$
\end_inset
we need
\begin_inset Formula
\[
\frac{1}{2}\|A_{m}y-b_{m}\|_{\Sigma_{mfm}}^{2}=C+\frac{1}{2}\|R_{m}\bar{x}+S_{m}y-d_{m}\|_{\Sigma_{m}}^{2}-K_{gcm}
\]
\end_inset
which can achieved by setting
\begin_inset Formula
\[
A_{m}=\left[\begin{array}{c}
S_{m}\\
0
\end{array}\right],~b_{m}=\left[\begin{array}{c}
d_{m}-R_{m}\bar{x}\\
c_{m}
\end{array}\right],~\Sigma_{mfm}=\left[\begin{array}{cc}
\Sigma_{m}\\
& 1
\end{array}\right]
\]
\end_inset
and setting the mode-dependent scalar
\begin_inset Formula $c_{m}$
\end_inset
such that
\begin_inset Formula $c_{m}^{2}=C-K_{gcm}$
\end_inset
.
This can be achieved by
\begin_inset Formula $C=\max K_{gcm}=K_{gm}$
\end_inset
and
\begin_inset Formula $c_{m}=\sqrt{2(C-K_{gcm})}$
\end_inset
.
Note that in case that all constants
\begin_inset Formula $K_{gcm}$
\end_inset
are equal, we can just use
\begin_inset Formula $C=K_{gm}$
\end_inset
and
\begin_inset Formula
\[
A_{m}=S_{m},~b_{m}=d_{m}-R_{m}\bar{x},~\Sigma_{mfm}=\Sigma_{m}
\]
\end_inset
as before.
\end_layout
\begin_layout Standard
In summary, we have
\begin_inset Formula
\begin{equation}
E_{mf}(y,m)=\frac{1}{2}\|A_{m}y-b_{m}\|_{\Sigma_{mfm}}^{2}=E_{gcm}(\bar{x},y)+K_{gm}-K_{gcm}.\label{eq:mf_invariant}
\end{equation}
\end_inset
which is identical to the HybridGaussianConditional error
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:gm_error"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
\end_layout
\end_body
\end_document