Skip to content

Commit f698918

Browse files
committed
additional test based on Frank's colab notebook
1 parent 6e8e257 commit f698918

File tree

1 file changed

+76
-0
lines changed

1 file changed

+76
-0
lines changed

gtsam/hybrid/tests/testMixtureFactor.cpp

+76
Original file line numberDiff line numberDiff line change
@@ -229,6 +229,82 @@ TEST(MixtureFactor, DifferentCovariances) {
229229
EXPECT(assert_equal(expected_values, actual_values));
230230
}
231231

232+
/* ************************************************************************* */
233+
// Test components with differing means and covariances
234+
TEST(MixtureFactor, DifferentMeansAndCovariances) {
235+
DiscreteKey m1(M(1), 2);
236+
237+
Values values;
238+
double x1 = 0.0, x2 = 7.0;
239+
values.insert(X(1), x1);
240+
241+
double between = 0.0;
242+
243+
auto model0 = noiseModel::Isotropic::Sigma(1, 1e2);
244+
auto model1 = noiseModel::Isotropic::Sigma(1, 1e-2);
245+
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
246+
247+
auto f0 =
248+
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model0);
249+
auto f1 =
250+
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model1);
251+
std::vector<NonlinearFactor::shared_ptr> factors{f0, f1};
252+
253+
// Create via toFactorGraph
254+
using symbol_shorthand::Z;
255+
Matrix H0_1, H0_2, H1_1, H1_2;
256+
Vector d0 = f0->evaluateError(x1, x2, &H0_1, &H0_2);
257+
std::vector<std::pair<Key, Matrix>> terms0 = {{Z(1), gtsam::I_1x1 /*Rx*/},
258+
//
259+
{X(1), H0_1 /*Sp1*/},
260+
{X(2), H0_2 /*Tp2*/}};
261+
262+
Vector d1 = f1->evaluateError(x1, x2, &H1_1, &H1_2);
263+
std::vector<std::pair<Key, Matrix>> terms1 = {{Z(1), gtsam::I_1x1 /*Rx*/},
264+
//
265+
{X(1), H1_1 /*Sp1*/},
266+
{X(2), H1_2 /*Tp2*/}};
267+
auto gm = new gtsam::GaussianMixture(
268+
{Z(1)}, {X(1), X(2)}, {m1},
269+
{std::make_shared<GaussianConditional>(terms0, 1, -d0, model0),
270+
std::make_shared<GaussianConditional>(terms1, 1, -d1, model1)});
271+
gtsam::HybridBayesNet bn;
272+
bn.emplace_back(gm);
273+
274+
gtsam::VectorValues measurements;
275+
measurements.insert(Z(1), gtsam::Z_1x1);
276+
// Create FG with single GaussianMixtureFactor
277+
HybridGaussianFactorGraph mixture_fg = bn.toFactorGraph(measurements);
278+
279+
// Linearized prior factor on X1
280+
auto prior = PriorFactor<double>(X(1), x1, prior_noise).linearize(values);
281+
mixture_fg.push_back(prior);
282+
283+
// bn.print("BayesNet:");
284+
// mixture_fg.print("\n\n");
285+
286+
VectorValues vv{{X(1), x1 * I_1x1}, {X(2), x2 * I_1x1}};
287+
// std::cout << "FG error for m1=0: "
288+
// << mixture_fg.error(HybridValues(vv, DiscreteValues{{m1.first, 0}}))
289+
// << std::endl;
290+
// std::cout << "FG error for m1=1: "
291+
// << mixture_fg.error(HybridValues(vv, DiscreteValues{{m1.first, 1}}))
292+
// << std::endl;
293+
294+
auto hbn = mixture_fg.eliminateSequential();
295+
296+
HybridValues actual_values = hbn->optimize();
297+
298+
VectorValues cv;
299+
cv.insert(X(1), Vector1(0.0));
300+
cv.insert(X(2), Vector1(-7.0));
301+
DiscreteValues dv;
302+
dv.insert({M(1), 1});
303+
HybridValues expected_values(cv, dv);
304+
305+
EXPECT(assert_equal(expected_values, actual_values));
306+
}
307+
232308
/* ************************************************************************* */
233309
int main() {
234310
TestResult tr;

0 commit comments

Comments
 (0)